
 

 

 
 

FlashRunner 2.0 
Series 

 
High-Performance, 

Standalone In-System 
Programmers 

 
 

Programmer’s Manual 

Revision 2.23 — December 2023 
 
 
 

 
 

Copyright © 2023 SMH Technologies 
 



 

2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SMH Technologies S.r.l. 
via Giovanni Agnelli, 1 
33083 Villotta di Chions (PN) Italy 
E-mail (general information): info@smh-tech.com 
E-mail (technical support): support@smh-tech.com 
Web: http://www.smh-tech.com 
 

Important 
SMH Technologies reserves the right to make improvements to FlashRunner, its documentation and software routines, without 
notice. Information in this manual is intended to be accurate and reliable. However, SMH Technologies assumes no responsibility 
for its use; nor for any infringements of rights of third parties which may result from its use. 
SMH TECHNOLOGIES WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF 
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. 
Trademarks 
SMH Technologies is the licensee of the SofTec Microsystems trademark. 
All other product or service names are the property of their respective owners. 



 

3 

Contents 
 

1.1 IMPORTANT NOTICE TO USERS .......................................................................... 10 
1.2 GETTING TECHNICAL SUPPORT .......................................................................... 11 

2 SYSTEM SETUP/UPGRADE .......................................................................... 12 

2.1 SOFTWARE SETUP ........................................................................................... 12 
2.2 WHAT YOU NEED TO START ............................................................................... 13 
2.3 CONNECTION SETUP ........................................................................................ 15 

 Ethernet LAN connection settings .................................................... 15 
 USB CONNECTION – WINDOWS® ...................................................... 17 
 USB CONNECTION – LINUX ............................................................... 18 

2.4 OS UPDATE ................................................................................................... 19 

3 FLASHRUNNER WORKBENCH ..................................................................... 20 

3.1 OVERVIEW .................................................................................................... 20 
3.2 OPENING WINDOW ......................................................................................... 21 
3.3 TOP TOOLBAR ................................................................................................ 23 
3.4 LEFT TOOLBAR ................................................................................................ 24 
3.5 PROJECT SETUP .............................................................................................. 25 
3.6 PRODUCTION CONTROL ................................................................................... 26 
3.7 PROJECT EDITOR ............................................................................................. 29 
3.8 CYBER SECURITY ............................................................................................. 30 
3.9 WIZARD ........................................................................................................ 30 

 FlashRunner selection page .............................................................. 31 
 Main page ........................................................................................ 32 
 Device selection page ....................................................................... 33 
 FRB Management page .................................................................... 34 
 Communication settings page .......................................................... 35 
 Powering settings page .................................................................... 36 
 Additional parameters page ............................................................. 37 
 Command settings page ................................................................... 37 
 Additional commands page .............................................................. 38 

 Add the project to a channel ....................................................... 38 
3.10 ENCRYPT FRB (FRS) .................................................................................. 40 
3.11 ADVANCED FILE MANAGER ........................................................................... 43 
3.12 TERMINAL ................................................................................................ 45 
3.13 LOG ......................................................................................................... 46 



 

4 

3.14 MEMORY MAP TOOL .................................................................................. 48 
3.15 PIN MAP TOOL .......................................................................................... 49 
3.16 ADVANCED FRB MANAGER .......................................................................... 50 

 Add data to FRB: import from source file..................................... 52 
 Add data to FRB: Fill Data / Variable Data .................................. 53 
 Edit FRB block ............................................................................... 54 
 Other Options ............................................................................... 57 

4 FLASHRUNNER COMMANDS ....................................................................... 58 

4.1 HOW TO CONTROL FLASHRUNNER ...................................................................... 58 
 Host Mode ........................................................................................ 58 
 Standalone Mode.............................................................................. 59 

4.2 COMMAND SYNTAX ......................................................................................... 59 
 Sending a Command ......................................................................... 59 
 Receiving the Answer ........................................................................ 62 
 Numeric Parameters ......................................................................... 63 

4.3 COMMAND SUMMARY ..................................................................................... 64 
4.4 COMMAND REFERENCE .................................................................................... 69 

 CRC .................................................................................................... 70 
 CLRERR .............................................................................................. 71 
 CLRLOG ............................................................................................. 72 
 DELAY ................................................................................................ 73 
 DYNMEMCLEAR ................................................................................ 74 
 DYNMEMCLEARHEADER ................................................................... 75 
 DYNMEMREAD ................................................................................. 76 
 DYNMEMSET ..................................................................................... 77 
 DYNMEMSET2 ................................................................................... 78 

 DYNMEMSETHEADER ................................................................... 79 
 DYNMEMSETW ............................................................................ 80 
 DYNMEMSETW2 .......................................................................... 81 
 ECHO ............................................................................................ 82 
 FORCEDRIVER ............................................................................... 83 
 FRBREAD ...................................................................................... 84 
 FRBREADCMAC ............................................................................ 85 
 FRBREADCRC ................................................................................ 86 
 FSCMAC ........................................................................................ 87 
 FSCOUNT ...................................................................................... 89 
 FSCRC ........................................................................................... 90 
 FSEXIST ......................................................................................... 91 



 

5 

 FSGETCONTROL ........................................................................... 92 
 FSLS .............................................................................................. 93 
 FSLS2 ............................................................................................ 94 
 FSRM ............................................................................................ 95 
 FSSETCONTROL ............................................................................ 96 
 GENCRYPTOKEY ........................................................................... 97 
 GETADMINTIMEOUT ................................................................... 98 
 GETCMDLEVEL ............................................................................. 99 
 GETCOUNTER ............................................................................. 100 
 GETDATE .................................................................................... 101 
 GETENGSTATUS ......................................................................... 102 
 GETFREEMEM ............................................................................ 103 
 GETIP ......................................................................................... 104 
 GETLOGLEVEL ............................................................................ 105 
 GETPROGRESSBAR ..................................................................... 106 
 GETPUBKEY ................................................................................ 107 
 GETVPROG ................................................................................. 108 
 HELP ........................................................................................... 109 
 HSMEMFORMAT ........................................................................ 110 
 ISMEMENOUGH ......................................................................... 111 
 ISPANELMODE ........................................................................... 112 
 LICERASE .................................................................................... 113 
 LICINSTALL ................................................................................. 114 
 LISTLIC ........................................................................................ 115 
 LISTLICAM .................................................................................. 116 
 LOADDRIVER .............................................................................. 117 
 LOGIN ........................................................................................ 118 
 LOGOUT ..................................................................................... 119 
 PROGRESSBAR ........................................................................... 120 
 REBOOT ..................................................................................... 121 
 RLYCLOSE ................................................................................... 122 
 RLYOPEN .................................................................................... 123 
 RSTENGSTATUS .......................................................................... 124 
 RUN ............................................................................................ 125 
 SETADMINPWD ......................................................................... 126 
 SETADMINTIMEOUT .................................................................. 127 
 SETCOUNTER ............................................................................. 128 
 SETCMDLEVEL ............................................................................ 129 
 SETDATE..................................................................................... 130 



 

6 

 SETDIO ....................................................................................... 131 
 SETFRSPWD ................................................................................ 132 
 SETIP .......................................................................................... 133 
 SETLOGLEVEL ............................................................................. 134 
 SETMUX...................................................................................... 135 
 SETPANELMODE ......................................................................... 136 
 SETSERIALBAUDRATE ................................................................. 137 
 SGETAMSN ................................................................................. 138 
 SGETENG .................................................................................... 139 
 SGETERR ..................................................................................... 140 
 SGETSN ....................................................................................... 141 
 SGETVER ..................................................................................... 142 
 SGETVERALGO ............................................................................ 143 
 SGETVERALGOLIST ..................................................................... 144 
 SHA256 ....................................................................................... 145 
 SHUFFLEDIO ............................................................................... 146 
 SHUFFLEDIO_GETMAP ............................................................... 148 
 SPING ......................................................................................... 149 
 TCSETDEV ................................................................................... 150 
 TCSETPAR ................................................................................... 151 
 TESTVPROG ................................................................................ 152 
 TPCMD ....................................................................................... 153 
 TPEND ........................................................................................ 154 
 TPSETDUMP ............................................................................... 155 
 TPSETSRC.................................................................................... 156 
 TPSTART ..................................................................................... 157 
 TPUNSETDUMP .......................................................................... 158 
 TPUNSETSRC .............................................................................. 159 
 UNFORCEDRIVER ........................................................................ 160 
 UNLOADDRIVER ......................................................................... 161 
 UNSETADMINTIMEOUT ............................................................. 162 
 VOLTAGEMONITOR .................................................................... 163 
 WATCHDOGFEED ....................................................................... 164 
 WHOAMI .................................................................................... 166 

5 PROJECTS .................................................................................................. 167 

5.1 EXECUTION AND TERMINATION ........................................................................ 171 
 Standalone project execution ......................................................... 171 
 Remote projects execution ............................................................. 172 



 

7 

5.2 PROJECT-SPECIFIC DIRECTIVES ......................................................................... 173 
5.3 LOGGING .................................................................................................... 173 
5.4 COMMENTS ................................................................................................. 173 
5.5 CONDITIONAL SCRIPTING ................................................................................ 174 

6 SERIAL NUMBERING ................................................................................. 176 

6.1 INTRODUCTION ............................................................................................ 176 
6.2 COMMAND SYNTAX ....................................................................................... 176 
6.3 EXAMPLE .................................................................................................... 177 
6.4 WORD ADDRESSING ...................................................................................... 178 
6.5 USING DYNAMIC MEMORY WITHOUT FRB ......................................................... 179 

7 DATA PROTECTION SYSTEM ..................................................................... 180 

7.1 USER MANAGEMENT ..................................................................................... 180 
 Command permission level ............................................................ 181 
 Non-standard command permission level ...................................... 182 
 Flashing cycle limitation ................................................................. 183 
 Admin session timeout ................................................................... 183 

7.2 FRB ENCRYPTION.......................................................................................... 184 
7.3 MANAGING BIG FRS ON FLASHRUNNER HIGH-SPEED .......................................... 185 
7.4 DYNAMIC DATA ENCRYPTION ........................................................................... 185 
7.5 OS CERTIFICATION ........................................................................................ 186 

8 FLASHRUNNER INTERFACE LIBRARY ......................................................... 187 

8.1 OVERVIEW .................................................................................................. 187 
8.2 FLASHRUNNER INTERFACE LIBRARY OVERVIEW ................................................... 187 
8.3 INSTALLATION .............................................................................................. 188 
8.4 INTERFACE LIBRARY REFERENCE (VERSION 1.0) ................................................... 189 

 Using the Interface Library Functions ............................................. 189 
 Return Values of the Interface Library Functions ........................... 190 
 Unicode Functions .......................................................................... 190 
 FR_OpenCommunication ................................................................ 191 
 FR_CloseCommunication ................................................................ 192 
 FR_GetAnswer ................................................................................ 193 
 FR_GetFile ...................................................................................... 194 
 FR_GetLastErrorMessage ............................................................... 196 
 FR_SendCommand ......................................................................... 197 

 FR_SendFile................................................................................ 198 
 FR_GetPublicKey ........................................................................ 199 



 

8 

 FR_EncryptData ......................................................................... 200 
 FR_HexToAsciiStream ................................................................ 201 

8.5 INTERFACE LIBRARY REFERENCE (VERSION 2.0) ................................................... 202 
 Using the C# Interface Library Class ............................................... 202 
 Return Values of the Interface Library Methods ............................. 203 
 Method Reference for FR 2.0 .......................................................... 205 
 FR_OpenCommunication ................................................................ 205 
 FR_CloseCommunication ................................................................ 206 
 FR_SendCommand .......................................................................... 207 
 FR_GetAnswer ................................................................................ 208 
 FR_GetLastErrorMessage ............................................................... 209 
 FR_GetDllVersion ............................................................................ 210 

 FR_SendFile ................................................................................ 211 
 FR_GetFile .................................................................................. 212 
 FR_RunProject ............................................................................ 213 
 FR_GetLogger ............................................................................ 214 
 FR_DisposeLogger ...................................................................... 215 
 FR_GetPublicKey ........................................................................ 216 
 FR_EncryptData ......................................................................... 217 
 FR_HexToAsciiStream ................................................................ 218 

9 FRB CONVERTER ....................................................................................... 219 

10 VOLTAGE MONITOR .................................................................................. 224 

10.1 INTRODUCTION ........................................................................................ 224 
10.2 COMMAND SYNTAX .................................................................................. 225 
10.3 COMPUTATIONAL LOAD ............................................................................. 229 
10.4 MEASUREMENT PROCESS ........................................................................... 229 
10.5 ERROR TYPES ........................................................................................... 231 

11 PROGRESS BAR ......................................................................................... 232 

11.1 INTRODUCTION ........................................................................................ 232 
11.2 COMMAND SYNTAX .................................................................................. 233 
11.3 PROGRESS BAR AND DLL ........................................................................... 235 
11.4 LIMITATIONS ........................................................................................... 237 

FLASHRUNNER INTERNAL MEMORY .................................................................. 238 

12 TROUBLESHOOTING ................................................................................. 239 

12.1 PROJECT EXECUTION FAILURES .................................................................... 239 



 

9 

  



 

10 

BEFORE STARTING 

 

i 
 

Note: an updated version of FlashRunner 2.0 
System Software is available on the SMH 
Technologies website (www.smh-tech.com). 
Please check it before continuing to read this 
documentation. 

1.1 Important Notice to Users 

While every effort has been made to ensure the accuracy of all 
information in this document, SMH Technologies assumes no 
liability to any party for any loss or damage caused by errors or 
omissions or by statements of any kind in this document, its 
updates, supplements, or special editions, whether such errors 
are omissions or statements resulting from negligence, 
accidents, or any other cause. 



 

11 

1.2 Getting Technical Support 

 
 

i 
 

Note: Keep FlashRunner 2.0 always in a well-
ventilated area in order to prevent product 
overheating, which could affect product performance 
and, if maintained for a long time, it could damage 
product hardware components. 

 
SMH Technologies is continuously working to improve 
FlashRunner firmware and to release programming algorithms 
for new devices. SMH Technologies offers fast and 
knowledgeable technical support to all of its customers and it is 
always available to solve specific problems or meet specific 
needs. 
 
 
 
 
To get in touch with SMH Technologies, please refer to the 
contact information below. 
 
Phone:       +39 0434 421111 
Fax:        +39 0434 639021 
Technical Support:  support@smh-tech.com 

mailto:support@smh-tech.com


 

12 

2 System Setup/Upgrade 

2.1 Software Setup 

The FlashRunner system software setup installs all required 
components to your hard drive. These components include: 
 
▪ FlashRunner 2.0 Workbench software (GUI). 
▪ Command-line utilities and Interface Library (DLL). 
▪ Documentation in PDF format. 
 
To install the FlashRunner system software: 
 
▪ Check the latest “System Software” package for 

FlashRunner 2.0 on SMH Technologies website. 
▪ Follow the on-screen instructions in order to install the 

System Software. 
 

 
To launch FlashRunner 2.0 Workbench under Microsoft 
Windows®, select Start → Programs → SMH Technologies → 
FlashRunner 2.0 → FlashRunner 2.0 Workbench.  
For more details on the functionalities of the Workbench GUI, 
please refer to chapter 3. 
  

 

i 
 

Note: to install the FlashRunner system software 
you must log in as Administrator. 



 

13 

2.2 What you need to start 

FlashRunner 2.0 supports thousands of devices. In order to 
program a specific one, you will need the following: 
 
▪ Driver file (.so): dynamic library which contains routines 

needed to program a set of specific devices. SMH 
Technologies releases continuous updates to support new 
devices; when you request a new device, you'll often receive 
also an updated version of the driver. 

▪ License file (.lic): text file which contains a CRC key that 
binds together your specific FlashRunner 2.0 (by using its 
unique serial number) with your target device. There are 
different license types, Please ask SMH Technologies Sales 
Team for more information.  

a) License for a single target device. 
b) License for a single-family.  
c) License for a silicon manufacturer.  

▪ FRB file (.frb): FlashRunner proprietary file format used to 
store customers’ firmware. There is a specific tool available 
on FlashRunner 2.0 Workbench, called FRB Manager, 
described in ch 3.16 which allows the conversion from the 
customer file, to the FRB file.  

▪ Project file (.prj): text file containing all the necessary 
information for setting your programming session. They 
contain some static information regarding the device, all 
user-configurable parameters and all commands which will 
be executed on the target device. FlashRunner 2.0 
Workbench has a tool, Project Wizard, described in chapter 
Errore. L'origine riferimento non è stata trovata. which 
allows creating a project from scratch only using graphical 



 

14 

items. Once created, a project could be modified by simply 
editing it with a text editor. 

On the SMH Technologies website (www.smh-tech.com) you 
can check the full supported device list.  
 
In order to program a specific device identified by its part 
number, a dedicated license file for the couple “device and 
programmer” (identified by its serial number) must be 
purchased. 
 
In addition, you can order a shared license, which binds a 
specific device to more FlashRunner (up to 10 programmers 
can be included inside a license). By doing this, a single file 
could be installed in more programmers and enable all of 
them to program a specific target device. 
 
You can purchase a license through our direct channel by writing 
to our Sales Office: sales@smh-tech.com. If you instead bought 
FlashRunner from an SMH distributor, please contact him. Once 
ordered a license, you'll receive a package with a license file and 
a driver file, which must be copied to your FlashRunner 2.0 
product. 
  

http://www.smh-tech.com/
mailto:sales@smh-tech.com


 

15 

2.3 Connection setup 

FlashRunner 2.0 Workbench can control the programmer in Host 
mode (via USB or Ethernet connection), or in Standalone mode 
(via Control Connector) which can select and run a specific 
project stored in its internal storage memory. For first use and to 
connect the programmer to FlashRunner 2.0 Workbench, you'll 
have to use FlashRunner 2.0 in Host mode. 
 

 Ethernet LAN connection settings 

By default, FlashRunner 2.0 IP address is 192.168.1.100, with 
Subnet Mask 255.255.255.0 and gateway 192.168.1.1. After the 
first time connection, you will be able to change this setting using 
SETIP command. 

 

i 
 

Note: LAN connector area reaches more than 50° 
degrees when connected to the host. Keep 
FlashRunner 2.0 always in a well-ventilated area to 
prevent product overheating, which could affect 
product performance and, if maintained for a long 
time, could damage product hardware components. 

Use the ethernet cable included in FlashRunner 2.0 box and 
connect it to your switch or directly to your host pc. Once 
connected, the red cross in the network connections icon related 
to your network card should disappear. 

 



 

16 

If host pc and FlashRunner 2.0 are connected through a router, 
please be sure that they are in the same subnet: host pc IP 
address must be included between 192.168.1.1 and 
192.168.1.254 address range. 

If your pc and FlashRunner 2.0 are directly connected, you'll 
need to set a static IP on the network card used for connecting 
host pc with FlashRunner 2.0. Please open the network card 
settings window and use the following:  

▪ IP ADDRESS: 192.168.1.X (where X is whatever number 
from 1 up to 254 except 100, which is FlashRunner IP). 

▪ SUBNET MASK: 255.255.255.0 

▪ GATEWAY: 192.168.1.100 

 



 

17 

 

FlashRunner 2.0 Workbench is configured by default to connect 
to 192.168.1.100 FlashRunner 2.0 IP address. If  need to change 
FlashRunner 2.0 IP address, you can easily update also 
FlashRunner 2.0 Workbench on connection settings. 

 

 USB CONNECTION – WINDOWS® 

Once connected USB cable, please check on “Device Manager 
→ Ports (COM & LPT)” if you can find USB Serial Port (COMX); 
where X is an integer number. If not, please click “Action → Scan” 
to update the hardware detected: 

 

 

 



 

18 

Once found this item, please use the same COM port to setup 
FlashRunner 2.0 Workbench software. Click on 
“Settings->Connection->Serial” put COMX value inside “port 
textbox”. 

 

 

 

 USB CONNECTION – LINUX 

Please check with dmesg command which device node has been 
assigned to FlashRunner 2.0. Usually, Linux assigns ttyUSBX 
(where X is an integer number) device node. Please check under 
/dev folder if your user has write/read privileges on /dev/ttyUSBX 
device node. If not, please add it through chmod. Then open 
FlashRunner 2.0 Workbench “Settings->Connection->Serial”and 
fill “port textbox” with /dev/ttyUSBX.  



 

19 

2.4 OS Update 

Please, note that the procedure below is referred to the latest 
version of GUI Workbench. 
 
In order to update FlashRunner 2.0 simply follow these steps: 
 
1. Please connect to FlashRunner 2.0 using the "Connect" 

button at the top left of GUI Workbench. 

2. Click on “Download -> FlashRunner OS” to get the latest 
FlashRunner 2.0 firmware, or download it directly from SMH 
website. 

3. Click to "Update OS" in the GUI Workbench, like in the image 
below. 

 

4. Then select the file "update.tgz” that you just downloaded. 
The GUI Workbench will transfer the file and the 
FlashRunner will reboot. 

5. Please, connect again to FlashRunner using "Connect" 
button at the top left of GUI Workbench. 

6. Check the OS version by sending, using the Terminal, on 
“Master channel” the “SGETVER” command. Or you can 
read it on the top of the Workbench (in the picture above: 
OS:3.19) 



 

20 

3 FlashRunner Workbench 

3.1 Overview 

FlashRunner Workbench is a simple application for PC that is 
able to communicate with FlashRunner 2.0, FlashRunner LAN 
NXG and FlashRunner HS. It performs the following operations: 
 
1. Create new projects; 
2. Run projects and monitor programmer status; 
3. Create FRB binary files; 
4. Send and receive files to / from the programmer (such as 

projects, FRB, drivers and licenses); 
5. Update OS and Drivers; 
6. Retrieve log. 
 
FlashRunner Workbench is compatible with all Microsoft 
Windows® operating systems and with Linux operating systems. 
  



 

21 

3.2 Opening window 

Once you run FlashRunner Workbench you'll see a window like 
the one below. It's designed with a top toolbar, a left toolbar and 
a central area that contains the recent projects. 
From this window, you can create a new project or open an 
existing one. 
 

 
 
After opening a project, the opening window will change and you 
will see the project details. The new window will be like the one 
in the figure below. 



 

22 

This window has still the same toolbars and a central area 
composed of 3 tabs: 
1. Project Setup: this tab gives a review of all settings of the 

current project. 
2. Production Control: this tab monitors the on-going 

programming session. 
3. Project Editor: this tab allows the user to manually edit the 

project from an advanced text editor. 
4. Cyber Security: this tab allows the user to manage cyber 

security features. 
 

  



 

23 

3.3 Top toolbar 

From left to right, the top toolbar provides the following features: 

 
1. Connect button: connect/disconnect from FlashRunner and 

review connection status. 
2. Send configuration button: send project and FRB to 

FlashRunner. 
3. Update database: download the latest version of the 

Devices.smh file, which contains all the info of the supported 
devices. 

4. Working mode: set the working mode of FlashRunner (this 
command is not available if the unit connect is a FlashRunner 
HS). 

 
5. Send button: click to send projects, FRBs, drivers, licenses 

and OS updates. 
6. Get button: click to get projects, FRBs, drivers, licenses and 

logs. 
  



 

24 

3.4 Left toolbar 

The left toolbar shows the most important features of 
FlashRunner Workbench at a sight. 
 

 Create project wizard. See ch Errore. L'origine 
riferimento non è stata trovata. 

 Edit actual / existing project  

 Load project  

 Advanced FRB manager to create / edit an FRB file 

  Show device list 

  Pin map of the devices selected in the project 

  Memory map of the devices selected in the project 

  Advanced File Manager. See ch 3.11 

  Terminal. See ch 3.12 

 Log. See 3.13 

  



 

25 

3.5 Project setup 

After creating or opening a project, you will see a review of all the 
project settings. Moreover, you will get also information about 
connections and wirings, they are also available on the Pin Map 
Tool described in ch 3.15. 
It is also possible to export this page in PDF. 
 

  



 

26 

3.6 Production Control 

 
 
After opening a project, into the Production Control tab will be 
loaded a widget for each channel defined inside the project. Each 
widget contains the following labels: 
1. Device: shows the target device name defined for that 

channel. 
2. Binary File: shows FRB file defined for that channel. 
3. Run button: the button which starts the project only on that 

single channel. 
4. Prog. Time: shows the total execution time for that channel. 



 

27 

5. N° of PASS: shows the number of successful project 
executions for that channel. 

6. N° of FAIL: shows the number of failed project executions 
for that channel. 

7. Status: label which reports actual channel status. There are 
four possible states:  

a. Pass: last project execution completed successfully 
and the channel is idle. 

b. Fail: last project execution failed and the channel is 
idle. 

c. Idle: the channel is waiting for project execution. 
d. Busy: The channel is running a project. 

 
On the right side of Production Control there are 5 sections: 
 
1. Send Project to FlashRunner: this button sends the PRJ 

file and FRB files to FlashRunner. 
 

2. General Information: 
a. Project Name: shows the project name currently 

loaded. 
b. Operator Name: shows the operator name (the user 

can insert it there). 
 
3. Channels Information: 

a. N° of Runs: shows the total number of executions 
considering each channel separately. 

b. N° of PASS: shows the total number of successful 
executions considering each channel separately. 

c. N° FAIL: shows the total number of failed executions 
considering each channel separately. 

 
  



 

28 

4. Project Information: 
a. N° of Cycles: shows the total number of project 

executions. 
b. N° Cycles PASS: shows the total number of 

successful project executions. 
c. N° Cycles FAIL: shows the total number of failed 

project executions. 
d. PASS Percentage: shows the actual pass percentage 

over the total number of project executions. 
e. Avg. Cycle Time: shows the average time of project 

executions. 
f. Max. Cycle Time: shows the maximum time of project 

executions. 
g. Min. Cycle Time: shows the minimum time of project 

executions. 
h. Last Cycle Time: shows the time of the last project 

execution. 
i. Clear All: this button will reset all the shown values. 

 
5. Control Room: this section lets the user control the project 

executions. It is possible to launch a single project execution 
or to launch a stress test with multiple consecutive 
executions. Stress test mode can be launched with some 
additional settings: 

a. Sync. Channels: this option, if enabled, synchronize 
the start of the project on all the channels (default 
case), otherwise each channel will run separately. 

b. Stop on Failure: this option, if enabled, stops the 
stress test if a channel fails. 

c. Limited to: this option sets a limit to the number of 
project executions. 

  



 

29 

3.7 Project Editor 

Into the Project Editor tab, the user can find a built-in text editor 
which can be used to manually edit the project file. 
This editor has a syntax analyzer that helps the user to avoid 
mistakes and simplify the recognition with different colors. When 
saving a project, a warning could appear if there are some 
unrecognized commands and they can be easily noticed 
because these commands are underlined in red. 
 

  



 

30 

3.8 Cyber Security 

Into the Cyber Security tab, the user can easily manage all cyber 
security features that are described in the chapter Data 
Protection System, such as user management and firmware 
encryption. 
 

3.9 Wizard 

FlashRunner collects all the user settings related to the 
programming sessions in text files called “projects”. Inside each 
project, you'll find a set of commands (all rows beginning with “#” 
character are commands, see ch. 4) which, of course, could be 
sent one by one through our interface library, through the serial 
port or through “Terminal” tool of FlashRunner Workbench. 
Having a single file including all these settings however brings 
several benefits to users, which they could save on a single file 
all the settings needed to program a specific device and running 
a complete programming cycle with only one click. 
 
Wizard tool is one of the most innovative features of FlashRunner 
Workbench and lets users create a complete working project 
using only graphic items. A set of wizard pages will guide users 
toward all the specific device settings. Once completed, a project 
file will be created inside the FlashRunner data folder (which can 
be found or changed on Tools → Settings menu items, “Paths” 
tab) and must be uploaded to FlashRunner before executing it. 
  



 

31 

 FlashRunner selection page 

You can create a new project using File → New Project. If the 
FlashRunner Workbench is not connected to the FlashRunner 
the first wizard page will let you select the FlashRunner for which 
you want to create the project. 
 

 
 
If the FlashRunner Workbench is already connected to the 
FlashRunner the wizard will show you the main page (see next 
chapter).  



 

32 

 Main page 

This is the main page of the wizard to create/modify a project. If 
FlashRunner Workbench is connected to the FlashRunner, you'll 
have a set of checkboxes enabled depending on how many 
channels are enabled/available on the FlashRunner.  
The page is structured as follow: 
 

• On the top a name for the project can be inserted. 

• On the right-top it can be selected the Configuration Mode 
which depends on the device you want to program. 

• In the centre there are the available channels. 

• On the left can be created a device’s project. 
  



 

33 

 Device selection page 

Clicking on “Create New Device” you can select which target 
device you want to program. Remember that each device needs 
its library, written in “Driver Name” column; make sure to have 
this library. You can download it locally on your PC the latest 
version by just clicking on the driver on the “Download Driver via 
FTP” column. 
 

  



 

34 

 FRB Management page 

 
 
On the FRB management page, there are some options for FRB 
creation and usage. First, you can choose the source: 

• Select an existing FRB file: select an already created 
FRB file. 

• Quickly generate a new FRB file: select an FRB source 
file and convert it with just a single click. This is the fastest 
way to convert a source file to FRB. The FRB is created 
and saved in the standard user data folder with the same 
filename as the selected source file (some special 
characters like ‘&’ are not allowed). 

• Manually compone a new FRB file: open a new window 
to access advanced features about FRB file creation. See 
the chapter “Advanced FRB Manager” for more details.  



 

35 

• Use only Dynamic Memory: this doesn’t create any FRB 
file, it only uses dynamic memory. See chapter “Serial 
Numbering”. 

• No FRB file: this will set no FRB files. 
 
In this window it is also possible to set the advanced option 
“Ignore blank page”: this allows FlashRunner to skip pages 
without any data different from the blank value. Sometimes this 
feature can improve flashing times, according to the device's 
characteristics. Be careful that this option can not be used for all 
devices. If you are not sure please contact our Support Team. 
 
At the bottom of the page, the user can also open and check the 
memory map of the selected device. The Memory map tool is 
described in detail on ch 3.14. 
 

 Communication settings page 

This page has several configurations about the communication 
setting: 

• Communication Protocol: JTAG, SWD, UART, SPI… 

• Communication Frequency: in MHz 

• Input Clock:  frequency of the External Oscillator of the 
device. This field is not always present. 

• PLL Clock: frequency of the PLL of the device. This field 
is not always present. 

• Reset Drive and Reset Time: select the reset-up and 
reset-down time. The reset drive selects how the 
FlashRunner manages the reset line. OPENDRAIN 
means that the FlashRunner, after the reset, does not 
drive the line. PUSHPULL means the FlashRunner always 
drives the line. The choice is based on the hardware setup 
of the board. 



 

36 

• Power Time: the FlashRunner can be used also as a 
power supply for the board. If there are big capacitors, it 
may be necessary to increase the power-up time. It is also 
possible to reduce this time to save a few milliseconds. 

 
All these settings will enter as #TCSETPAR in the final project.  
 

 
 

 Powering settings page 

This page allows the user to set the values of VPROG0 and 
VPROG1 and their tolerance values (#TCSETPAR values). The 
VPROG0 is also the logical voltage of the DIO signals. VPROG1, 
instead, can only be used as a power supply. The tolerance for 
the VPROG and IPROG monitoring can be set. 
On this page, it is also possible to set the relay barrier usage, to 
manage automatically the opening and closing of the relays. 



 

37 

 
 

 Additional parameters page 

This page contains some additional parameters related to the 
device. This page is driver and device-dependent. To know more 
about the settings here presented, the WIKI of the driver can be 
consulted. 
 

 Command settings page 

This page contains the standard commands related to the 
memory regions of the device. Some commands may be 
disabled according to the FRB file chosen. If there is no data 
present for some area, the Wizard does not allow to enable the 
Program and Verify operations. Moreover, the Checksum, Read 
and Dump operations may be not available for some devices. 
 



 

38 

 
 

 Additional commands page 

This page contains some additional commands related to the 
device. This page is driver and device-dependent. To know more 
about the settings here presented, the WIKI of the driver can be 
consulted. 
 

 Add the project to a channel 

Once the device is created, on the main page the user will see 
on the left the device. With drag and drop the user can insert the 
device into the desired channels. 



 

39 

 
 
The user can create new devices and add them to a channel. 
Once the project creation is ended, the user can give a name to 
the project and click on finish.  



 

40 

3.10 Encrypt FRB (FRS) 

An existing FRB could be encrypted through FlashRunner 
Workbench software. You simply have to click on the “Encrypt 
FRB” button from the tools menu and choose the FRB file you 
want to encrypt. 
Otherwise, it is also possible to check the “Encrypt FRB” option 
while creating the FRB from the “Advanced FRB Manager”, this 
will directly generate the encrypted file without creating any 
additional unencrypted FRB file. 
 
When encrypting FRB, it is possible to choose between four 
encryption methods as shown in the image below. 
 

 
 

Authenticated asymmetric encryption 
The first option is the strongest one and uses asymmetric 
encryption (available for OS versions higher than 3.20) and 
includes an authentication check to prevent data alterations. This 
encryption method requires some key exchange with the 
FlashRunner, so be sure to connect it to your computer. In case 
the FlashRunner cannot be connected to the computer that has 
to encrypt the file, you can get the keys from another computer 
connected to the FlashRunner, then you can export the keys and 
import them to your computer. 



 

41 

During the encryption process, you will be asked to choose for 
which FlashRunner SN you want to encrypt data, you can choose 
more than one SN and only those FlashRunners will be able to 
decrypt the data contained in the encrypted FRB. 
Moreover, you will be asked to insert a secret key used to 
calculate the CMAC value which is used to authenticate the data. 
 
Asymmetric encryption 
The second option is still very strong and uses asymmetric 
encryption like the previous one, but it does not include the 
authentication check with CMAC (available for OS versions 
higher than 3.19).  
 
Customized symmetric encryption 
The third option is still quite strong but it is also easier to use. In 
this case, the data are encrypted using a symmetric key 
generated from a password inserted by the user. Since it uses a 
symmetric key, the same password must be shared with 
FlashRunner. FlashRunner can only memorize one password at 
a time, so all the FRB files must be encrypted using the same 
password. 
 
Fixed symmetric encryption 
This is the legacy method that is discouraged for new 
applications and it is not compatible with the higher cyber security 
standards that are applied nowadays. 
In case you are using this type of encryption, you can upgrade 
your FRS with a couple of clicks. In fact, You simply have to click 
on the “Encrypt FRB” button from the tools menu and choose the 
FRS file you want to upgrade. 
 
It is also possible to generate or upgrade an encrypted FRB file 
from the command-line tool “FRB Converter” 
 



 

42 

Anyway, if you have a project which uses the original FRB file 
and you want to substitute it with its encrypted version, please 
modify the project file with the project editor at the #TPSETSRC 
command line. Then send both the project and FRS file to 
FlashRunner.  
  



 

43 

3.11 Advanced file manager 

 
Advanced File Manager is an easy tool for updating or retrieving 
files to/from connected FlashRunner. On the left side you'll find 
your local resources, on the right side you'll find FlashRunner 
resources, in which only five folders are available and are shown 
as tabs. 
As the names suggest, project files (.prj) must be copied in 
“Project” folder, drivers (.so) must be copied in “Drivers” folder, 
licenses (.lic) must be copied in “License” folder, FRB files must 
be copied in “FRB” folder, the log file is available in “Log” folder. 
Once clicked a file from your local resources, please select a 
destination folder and then click “Send” button. Vice versa, select 
a file from FlashRunner folder and click “Get” button. 



 

44 

On the bottom of the right side you can also see the memory 
usage of your FlashRunner: 

• Total memory: the amount of memory contained on the 
partition of the SD card. 
 

• Memory used: the amount of memory that is currently 
used by user data. 
 

• Memory free: the amount of memory that is unused. 
 

• Percentage: percentage of memory used by user data. 
 

• Log.txt size: size of the log file, this can grow up to 
200MB, then it will be automatically resized, but 200MB 
are always pre-allocated. 
 

• Available memory: the amount of memory that can be 
used by user data. This is different from “Memory free” 
because it also considers the 200MB of the log file. 

  



 

45 

3.12 Terminal 

 
 
Host pc interacts with FlashRunner via synchronous serial 
communication. Host send commands and receive answers, for 
detailed information regarding communication syntax and 
available commands please see ch 4. 
On the top left side of the window a label will show you which 
channel is selected. To send a command, write it inside the 
editable combo box at its right, finally, click the “Send” button. If 
you want to send a command to all channels simply click the 
“Send all” button. If you want to change the channel, please, 
select it with the button toolbar at the bottom right side. 
Please note that the “#” character will be automatically added, if 

not entered. 
On the left side, you have a list of buttons to quickly send the 
most common commands.  



 

46 

3.13 Log 

 
 
The Real-Time Log feature shows the complete tracking of 
FlashRunner activity. 
“Communication” tab will show full communication based on 
received commands, while “Channel communication” will filter 
out communication by single channel. You can select a channel 
by using the bottom right toolbar. “Log” tab will show all operation 
executed by FlashRunner, including commands included in 
project files. 
 



 

47 

Each row is composed with the following syntax: 
 
<channel>|<log level>|<timestamp>|---<command sent> 
<channel>|<log level>|<timestamp>|<command answer> 

 
Example: 
 
01|2|200331-16:28:10.437|---#TPCMD VERIFY F S 

01|1|200331-16:28:12.306|Time for VERIFY F S: 1.87 s 

01|2|200331-16:28:12.306|>| 

 
Log Level is a number from 1 up to 6 and defines logging 
verbosity level. Level 1 is the more verbose, level 6 is the most 
coincise. You can change log verbosity with SETLOGLEVEL 
command (check ch 4.4.64). 
 
Timestamp shows in which moment a command has been 
executed. Syntax used for timestamp is: 
<year><month><day>-<hour>:<min>:<sec>.<millisec> 

For each command sent there could be one or more answer 
lines. 
It is also possible to hide timestamp by unticking the “Show 
Datetime” check box. 
  



 

48 

3.14 Memory Map tool  

This tool show the memory map of each device included into the 
project. The interface is very simple and contains a lot of useful 
information about the memory of the device. 
  



 

49 

3.15 Pin Map Tool 

 
PinMap tool is a handy feature that helps users to do cable 
wirings from the target device to FlashRunner ISP connector. On 
the top you can select the FlashRunner (2.0, NXG or HS) and 
see the corresponding PinMap. Clicking on one of the channels 
available in list will load a table on the right side of the window, 
which lists all signals involved for device connection on that 
specific channel. Once clicked, related pins will become coloured 
and clicking on one of them will highlight the related signal in the 
signals table. Please note that FlashRunner has one or two ISP 
connectors based on product version: FlashRunner versions with 
8 or less active channels will have only one ISP connector, 
FlashRunner with more than 8 active channels will have two ISP 
connector. Please pay attention to the connector indication on 
top of signals table: first 8 channels are related to the master 
board connector, channel 9 up to 16 are related to the slave 
board connector.  



 

50 

3.16 Advanced FRB Manager 

The Advanced FRB Manager is a tool to create an FRB file (i.e. 
FlashRunner Binary) that contains all the source files (more than 
one is allowed) needed to program the target device. You can 
find this tool via Project Wizard or by selecting Tools → FRB 
Manager. 
Attention: converting an FRB through the Advance FRB 
Manager allows you to create an FRB without a device Memory 
Map as a reference; hence the data position of the source file 
can not be checked.  
 
FRB Manager can convert the most common source file formats: 
RAW Binary; Intel Hex and Motorola SREC. 
Advanced FRB setup will enable full features to users to let them 
compose their FRB file. Users can import multiple source files, 
edit single blocks start address and size, remove blocks and add 
“fill” or “variable data” blocks. 

 
After opening the window (see the image above), the user can 
decide to create a new FRB by clicking the “New FRB” button or 
to edit an existing FRB by clicking the “Open FRB” button. 
After that, the buttons on the left side will be activated and the 
user will be able to: add, edit, duplicate or delete a block of the 
FRB. The operations to edit, duplicate or delete a block will be 
active only after selecting a block from the list. 
 



 

51 

 
 
At the bottom of the window, the user can set the destination file 
and launch the conversion when the work on the FRB file is 
completed. 
 
It is also possible to Select a Device (bottom left) to enable the 
check of the source file position according to the memory map of 
the device. This operation can be skipped. 
 
  



 

52 

 Add data to FRB: import from source file 

 
 
Multiple source files can be added (also of different formats). 
Clicking on “Add” source file can be selected, choosing the 
format (binary, Intel Hex …). The tool automatically recognizes if 
the file selected is compatible with the memory map of the 
device. If one or more blocks are read, it means that they have 
data outside the programmable address of the device. If two or 
more blocks are blue, it means that there is an overlap of data in 
the same addresses (more blocks have data in the same places). 
Green means that everything is correct. 
 
When choosing Motorola SREC or Intel Hex, the user should also 
choose the encoding type: if data has been defined by words or 
by bytes. If you are not sure about what to select, just use the 
“Byte encoding” option. 
Data parsing will be achieved by reading and merging all the 
source file rows which define adjacent data areas, each 
disjointed block will define a new data area and will be placed in 
a new row (new block).  



 

53 

 Add data to FRB: Fill Data / Variable Data 

 
 
On the “Add “ window there is a second tab called “Fill Data / 
Variable Data”, the user can add a new block to FRB which 
contains the same value for each byte. 
As you can see in the figure above, the user can set the start 
address, the size and the fill value of the block. 
The new block will not impact total FRB size and could also 
overlap existing data. 
 
The same procedure is valid also for variable data, in fact, the 
user should just choose the value that corresponds with the blank 
values of the device memory. 
This will be used for dynamic content definition during target 
device programming (please check ch 6 for detailed information).  



 

54 

 Edit FRB block 

 
 

Once the user adds some data inside the new FRB file, some 
data rows inside the input data table will appear. If a data block 
overlapping occurs, two blocks involved are highlighted and the 
user should solve the conflict or explicitly decide to leave this 
conflict unresolved. 
In order to modify a single data block, you need to select it on the 
input data table and then click on the “Edit” button, a new window 
will appear, like in the image above. 
 

 

i 
 

Data block overlapping conflicts will be solved 
following this rule: the last data block (in row order) 
will overwrite overlapping data of the first data block. 



 

55 

From the new window, the user will be able to edit the source 
start address, the target start address and the size. 
 
If you use have selected a device, the memory map will appear 
at the bottom of the window. This helps to place the block in a 
proper memory region. 
If the chosen settings don’t fit any device memory regions, a 
warning will appear. As a result, data blocks that don't fit any 
device memory region will not be programmed at all on target 
device flash memory. 
 
Source address Setup 
This text field defines the address of the source file from which 
will start the block. This is only related to the source file. 
The default value is the first address of the block. 
 
Target address Setup 
This text field defines from which target device address will start 
block. This is the actual address from which the FlashRunner will 
start programming the target device. 
The default value corresponds with the source address. 
 
Target Size Setup 
This text field defines how many bytes will compose the block. 
This corresponds to the number of bytes which will be 
programmed on the target device by FlashRunner. 
The default value is the full block length. 
 
Example (see image below):  
The block as default starts from 0x00 and flashes data into the 
device from 0x00. 
Setting 0x1000 in the “Source Address Setup” means that the 
data from 0x1000 of the source file are going to be flashed from 
address 0x00 of the target device. 



 

56 

The last operation changes the data available for the block. 
Originally they are 0x100000, now 0xFF000. For this reason, the 
“Target Size Setup” has to be changed to 0xFF000. This field 
means that the bytes to be considered for that block are 
0xFF000. 
The ”Target Address Setup”, instead, changes the target device 
address. 0x3000 means that the data are going to be flashed 
from address 0x3000 of the device, instead of 0x00. 

 

 
  



 

57 

 Other Options 

Other options are present in the FRB Manager window: 
 

1. Crop: the start address and the size of the block can be 
changed. Changing the start address, all the data before that 
address are going to be erased. Changing the size, all the 
data after are going to be erased. This operation is 
irreversible. 

2. Remove: the block can be removed from the creation of the 
FRB. 

3. Duplicate: the block is duplicated. An overlap will be formed. 
4. Fill Gaps: merge source blocks where the distance between 

them is less than the program page size of the memory 
selected; the value used to fill the gap is the blank value (see 
Memory Map). This can optimize FlashRunner performances 
when too many blocks are present. This operation is 
irreversible.  

5. Unify Contiguous Memory Regions: treats two or more 
contiguous memory regions as a unique region. The FRB 
creator by default doesn’t accept a block to cross different 
memory regions and it is highlighted in red. This option 
removes this limit. 



 

58 

4 FlashRunner Commands 

4.1 How to control FlashRunner 

FlashRunner is set up and controlled via ASCII-based 
commands. FlashRunner can receive and execute commands in 
two ways: 

• Over a USB or Ethernet connection (Host mode); 

• Via signals received on its “Control connector” which can 
select and run a specific project stored in its internal 
storage memory (Standalone mode). 
 

In the first case, FlashRunner is controlled by a host system; in 
the latter case, FlashRunner works in standalone mode and it is 
fully autonomous inside an integrated production system. 
 

 Host Mode 

In Host mode, commands are sent from the host system to 
FlashRunner: 

• By using a TCP/IP or Serial command-line utility (like 
Termite© on Microsoft Windows©); 

• By using any programming language that can send and 
receive data to/from a host system COM port or Ethernet 
port (i.e. Microsoft Visual C++/Visual Basic, National 
Instrument LabView/LabWindows, etc.). An Interface 
Library is available upon which you can build your 
application. 

• You can use the FlashRunner Workbench software to 
send commands to the programmer. 



 

59 

 
 

i 
 

Note for TCP/IP: 
FlashRunner factory IP address is 192.168.1.100 
and data is exchanged on port 1234. 

  
 Standalone Mode 

In Standalone mode, FlashRunner does not need a connection 
to a host system. A group of control lines (SEL[4..0] in the 
“CONTROL” Connector) determines which of the 32 available 
projects stored in FlashRunner memory must be executed. 
You can check if the project execution has succeeded or not and 
you can check the failed channels in case of failure. 

4.2 Command Syntax 

 Sending a Command 

Each command, except project-specific directives shown in table 
5.2, must start with the # character (FlashRunner Terminal tool 

automatically adds this character). A command can be sent to: 

• Master engine 

• A single-site engine 

• All engines (Master engine and site engines) 

• All site engines  

• A subset of site engines 

Each command has different “coverage”, described in chapter 
4.3. For example, some commands can be sent only to the 
master (like #SPING), and others only to the site engines (like 

#RUN). 

  



 

60 

Each command is mainly composed of the following two parts: 

1. Command name. Example: #RUN 

2. One or more parameters, each separated by a space. 
Example: #RUN example.prj example.frb 

 

i 
 

Note: 
The length of each command’s parameter is at 
maximum 40 characters. All parts of the command 
are case sensitive. 

 
When sending a command, the # character is always used as the 

first character of the string. 
 
Single Site Command: 
A command sent to a single engine begins with # character 

followed by <channel number> (decimal value of the channel), 

followed by * character, followed by the command, a Carriage 

Return character and a final Line Feed character. Channels' 
number starts from 1 up to 16, the master engine is 55. 
Example: 

 Send a command to channel 7: 

  #7*RUN example.prj  

 

 Send command to the master: 

  #55*SPING 

 
All Site Command (site engines and master): 
A command sent to all engines in parallel begins with # 

character, followed by the command, a Carriage Return 
character and a final Line Feed character: 
 Example: 

  #RUN example.prj 

 



 

61 

Subset of site engines: 
A command sent to a subset of site engines begins with # 

character followed by <engine mask>, followed by | character, 

followed by the command, a Carriage Return character and a 
final Line Feed character. The <engine mask> is a decimal 

number that identifies bitwise channels on which command must 
be executed. 
Example: 

 Send a command to channels: 8, 5, 3, 2, 1. 

 Engine Mask: 0b10010111 = 151 

 #151|RUN example.prj 

 

 Send a command to all channel, but not the 

master. 

 Engine Mask: 0b11111111 = 255 

 #255|RUN example.prj 

 
FlashRunner Workbench software can send commands via the 
Terminal tool, which automatically adds #<channel number>*. 

Before sending a command, please click on the bottom right side 
of the window the channel for which you want to send the 
command. See chapter 3.11 for more details. 
 
Project files contain ENGINEMASK pseudo-command which 
already defines which engines will be involved for the following 
commands. For this reason, commands inside a project file don't 
need channel prefix. Thus, inside a project a command will be # 

character, followed by the command, a Carriage Return 
character and a final Line Feed character. 
Example: 

 #TPSTART 

 #CONNECT 

  



 

62 

 Receiving the Answer 

After receiving a command from the host system and executing 
it, FlashRunner responds with an answer string. The answer 
string is composed of zero or more response characters, followed 
by one result character, followed by a final Line Feed. The 
character of the result is: 
 

• > if the command has been executed successfully or 

• !  if the command generated an error. 
 
Below are two examples of answer (with and without error): 

 
When a FlashRunner command executes successfully, 
FlashRunner typically answers just with the engine number 
followed by | character, followed by > character, see figure 

above, (unless the command requires data to be returned).  



 

63 

When a FlashRunner command generates an error, 
FlashRunner answers with an eight-digit hexadecimal error code 
followed by the “!” character (see figure above). 
 

 Numeric Parameters 

Every numeric command parameter can be expressed either in 
decimal or hexadecimal format. Hexadecimal numbers must be 
preceded by the “0x” symbol. The figure below shows three 

examples of usage of the DYNMEMSET command to write two bytes 

on FlashRunner dynamic memory. These two examples below 
are equivalent: 
 
#DYNMEMSET 0x8E0400 0x2 0x00 0x0F 
#DYNMEMSET 9307136 2 0 15 

 
Numeric parameters returned by FlashRunner as command 
answer (CRC, memory data, error codes, etc.) are expressed in 
hexadecimal or decimal format, depending on the case. 
  



 

64 

4.3 Command Summary 

The following table summarizes all of the FlashRunner 
commands available. Each command is fully described in the 
“Command Reference” section in the next chapter. The columns 
are the following: 

▪ Command Name: the name of the command. 

▪ Description: a very brief description of the command. 

▪ Scriptable: describes if the command can be added inside a 
project file or not. 

▪ Site: describes if the command will work on channel engines 
(“S”), for the master engine only (“M”) or both (“M+S”); 

▪ Permission: describes the default permission level of the 
command when the Admin/Guest management is enabled. 
This level can be changed with SETCMDLEVEL command or 

using the latest version of Workbench software. In “Command 
Reference” you can check if the permission level is 
changeable. 

 



 

65 

Command Name Description Scriptable Type Permission 

System Commands 

CLRERR Clear the errors stack NO M+S GUEST 

CLRLOG Clear the log file NO M ADMIN 

ECHO Echo a string on the log YES M+S GUEST 

FSCMAC Return the CMAC value of a file NO M GUEST 

FSCOUNT Count the number of files in a folder NO M GUEST 

FSCRC Return the CRC32 value of a file NO M GUEST 

FSEXIST Check if a file does exist NO M GUEST 

FSGETCONTROL Read control interface value NO M GUEST 

FSLS List files NO M GUEST 

FSLS2 List files with more details NO M GUEST 

FSRM Remove file NO M ADMIN 

FSSETCONTROL Set control interface value NO M ADMIN 

GETDATE Return the FlashRunner date/time NO M GUEST 

GETFREEMEM Show details about memory usage NO M GUEST 

GETIP Return FlashRunner IP information NO M GUEST 

GETLOGLEVEL Get the log verbosity level NO M GUEST 

GETVPROG Read a power line value NO S GUEST 

HSMEMFORMAT Erase all data on HS Memory NO M ADMIN 

HELP Show driver help table NO S GUEST 

ISMEMENOUGH Check if there is enough memory NO M GUEST 

ISPANELMODE Return FlashRunner working mode NO M GUEST 

REBOOT Reboot programmer NO M GUEST 

SGETAMSN Return Active Module serial number NO S GUEST 

SGETSN Return FlashRunner serial number NO M GUEST 

SGETVER Get OS version NO M GUEST 

SGETVERALGO Return driver version NO M GUEST 

SGETVERALGOLIST Get the entire driver list with the version NO M GUEST 

SETDATE Get the actual FlashRunner date/time NO M ADMIN 

SETDIO Set output state of DIO YES S GUEST 

SETIP Set FlashRunner IP information NO M ADMIN 

SETLOGLEVEL Set log verbosity level NO M ADMIN 

SETPANELMODE Change FlashRunner working mode NO M GUEST 

SETSERIALBAUDRATE Change Serial communication speed NO M GUEST 



 

66 

Command Name Description Scriptable Type Permission 

SHA256 Calculate sha256 of a file YES M+S GUEST 

TESTVPROG Set up a defined value on VPROG lines NO S GUEST 

System Security Commands 

GETADMINTIMEOUT Get Admin session timeout NO M GUEST 

GETCMDLEVEL Get command permission level NO M GUEST 

GETCOUNTER Get flashing counter NO M GUEST 

GENCRYPTOKEY Generate keys used for encryption NO M PROTECTED 

GETPUBKEY Get the public key used to encrypt data NO M GUEST 

LOGIN Login into Admin account NO M GUEST 

LOGOUT Logout from Admin account  NO M ADMIN 

SETADMINPWD Set Admin password NO M PROTECTED 

SETADMINTIMEOUT Set Adnub session timeout NO M PROTECTED 

SETCMDLEVEL Set command permission level NO M PROTECTED 

SETCOUNTER Set flashing counter NO M PROTECTED 

SETFRSPWD Set the password to decrypt FRS NO M PROTECTED 

UNSETADMINTIMEOUT Remove Admin session timeout NO M PROTECTED 

WHOAMI Get current logged user NO M GUEST 

System Status Commands 

GETENGSTATUS Get actual engine status NO M GUEST 

RSTENGSTATUS Reset engine status NO M+S GUEST 

SGETERR Return detailed error information NO M+S GUEST 

SPING Ping FlashRunner NO M GUEST 

Dynamic Memory Commands 

DYNMEMCLEAR Clears dynamic memory YES S GUEST 

DYNMEMCLEARHEADER Clears dynamic memory crypto header YES S GUEST 

DYNMEMREAD Read dynam memory NO S NONE 

DYNMEMSETHEADER Defines dynamic data crypto header YES S GUEST 

DYNMEMSET Defines dynamic data YES S GUEST 

DYNMEMSET2 Defines dynamic data YES S GUEST 

DYNMEMSETW Dynamic data (word addressing) YES S GUEST 

DYNMEMSETW2 Dynamic data (word addressing) YES S GUEST 

FRB Management Commands 

FRBREADCMAC Check and return FRB CMAC value NO M+S GUEST 

FRBREADCRC Check and return FRB CRC value NO M+S GUEST 



 

67 

Command Name Description Scriptable Type Permission 

FRBREAD Read FRB content NO S NONE 

License Management 

LISTLIC FlashRunner licenses list NO M GUEST 

LISTLICAM Active Module installed license list  NO S GUEST 

LICERASE Erases all Active Module licenses NO S ADMIN 

LICINSTALL Install a license in an Active Module NO S ADMIN 

Project Programming Commands 

CRC CRC of TCSETDEV section NO S GUEST 

DELAY Stop engine operation for an interval YES S GUEST 

FORCEDRIVER Force a specific driver name YES S GUEST 

GETPROGRESSBAR Return the programming percentage NO M GUEST 

LOADDRIVER Set target device YES S GUEST 

PROGRESSBAR Set Progress Bar YES S GUEST 

RLYCLOSE Closes the specified relay YES S GUEST 

RLYOPEN Opens the specified relay YES S GUEST 

SETMUX Drive demuliplexer NO M GUEST 

SHUFFLEDIO Change logic/physical DIO map YES S GUEST 

SHUFFLEDIO_GETMAP Get the actual DIO Map YES S GUEST 

TCSETDEV Set target device information YES S GUEST 

TCSETPAR Set target device parameter YES S GUEST 

UNFORCEDRIVER Remove the forced driver YES S GUEST 

UNLOADDRIVER Reset target before updating a driver YES S GUEST 

VOLTAGEMONITOR Set Voltage Monitor YES S GUEST 

WATCHDOGFEED Set square wave on selected channel YES S GUEST 

Target Programming Commands 

TPCMD Executes programming command YES S GUEST 

TPEND Ends programming sequence YES S GUEST 

TPSETDUMP Set data destination YES S GUEST 

TPSETSRC Set data source  YES S GUEST 

TPSTART Starts programming sequence YES S GUEST 

TPUNSETDUMP Unset data destination YES S GUEST 

TPUNSETSRC Unset data source YES S GUEST 

Script Execution Commands 

RUN Executes the specified script NO S GUEST 



 

68 

Command Name Description Scriptable Type Permission 

Pseudo commands 

!ENGINEMASK Select an engine subset YES S - 

!CRC CRC calculation YES S - 



 

69 

4.4 Command Reference 

Each FlashRunner command is listed alphabetically and 
explained in the following pages. 
 
The following conventions are used in the documentation of 
FlashRunner commands: 
▪ Uppercase text indicates a command name or a command 

option that must be entered as shown. 
E.g. SGETVER 

▪ Lowercase text between <> indicates a command parameter 

name. 
E.g. TPSETDUMP <filename> 

▪ Lowercase text between [] indicates an optional command 

parameter. 
E.g. TPCMD <command> [par1] [par2] ... [parn] 

▪ A vertical bar indicates a choice between two or more 
command options. 
E.g. TPCMD MASSERASE F|E|C 

 

Please note that, except from examples, all the commands are 
provided without the #<ch>* prefix. 



 

70 

 CRC 

Command syntax: 
CRC <crc> 

Scriptable: No 

Available on: Site engines 

Permission:  
Default: Guest 
Changeable:  No 

Parameters: 
crc: crc value 

Answer data: 
Success: none 
Error: the error code 

Description: 

Set the CRC value of the precedent TCSETDEV section. The value can 
be taken from the project CRC pseudocode. This command can be 
used by the customer when he is using the DLL to send each command 
one by one. 

Example: 

#1*CRC 0x47546395 

01|> 

 



 

71 

 CLRERR 

Command syntax: 
CLRERR 

Scriptable: No 

Available on: Master and site engines 

Permission:  
Default: Guest 
Changeable:  Yes 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Clears the error stack. 

Example: 

#55*CLRERR 

55|> 

 



 

72 

 CLRLOG 

Command syntax: 
CLRLOG 

Scriptable: No 

Available on: Master engine only 

Permission:  
Default: Admin 
Changeable:  Yes 

Parameters: 
None. 

Answer data: 
Success: none 
Error: the error code 

Description: 

Clears the log file. 

Example: 

#55*CLRLOG 

55|> 

 



 

73 

 DELAY 

Command syntax: 
DELAY <ms> 

Scriptable: Yes 

Available on: Site engines only 

Permission:  
Default: Guest 
Changeable:  No 

Parameters: 
ms: milliseconds to wait 

Answer data: 
Success: none 
Error: the error code 

Description: 

Insert a <ms> delay between FlashRunner operations during the 
flashing of a device. 

Example: 

#1*DELAY 2000 
01|> 

 



 

74 

 DYNMEMCLEAR 

Command syntax: 
DYNMEMCLEAR [start_addr] [len] 

Scriptable: Yes 

Available on: Site engines only 

Permission:  
Default: Guest 
Changeable:  Yes 

Parameters: 
start_addr: address to start clearing dynamic memory data 
len: bytes number to clear 

Answer data: 
Success: none 
Error: the error code 

Description: 

Clears the data set on the dynamic memory area. In case no 
parameters are set, then all dynamic memory is cleared. 

Example: 

Clear all the dynamic memory: 

#1*DYNMEMCLEAR 
01|> 

 

Clear only selected dynamic memory: 

#1*DYNMEMCLEAR 0x0 0x10 
01|>



 

75 

 DYNMEMCLEARHEADER 

Command syntax: 
DYNMEMCLEARHEADER 

Scriptable: Yes 

Available on: Site engines only 

Permission:  
Default: Guest 
Changeable:  Yes 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Clears the crypto header of the dynamic data. All dynamic data sent 
after this command are meant to be unencrypted until another crypto 
header is set. 

Example: 

#1*DYNMEMCLEARHEADER 
01|> 



 

76 

 DYNMEMREAD 

Command syntax: 
DYNMEMREAD <address> <length> [page_size] [fill_val] 

Scriptable: No 

Available on: Site engines only 

Permission:  
Default: None 
Changeable:  Yes 

Parameters: 
address: the address where to start reading 
length: length of the read, max 128 bytes 
page_size: align data to a page size 
fill_value: fill value when there are no data in the Memory 

Answer data: 
Success: the data inside the Dynamic Memory 
Error: the error code 

Description: 

Read the data inside the loaded Dynamic Memory (with DYNMEMSET 
or equivalent commands). Max 128 bytes for each read. The data can 
be aligned to a specific page size and a fill value can be set (default is 
0xFF). This command is disabled by default for security reasons, since 
using this you could also read decrypted dynamic data. To enable it the 
User Management has to be enabled and the permission level 
changed. Please, refer to the chapter “Data Protection System”.  

Example: 

#1*#DYNMEMSET 0x00 0x05 0x00 0x01 0x02 0x03 0x04 
01> 
#1*DYNMEMREAD 0x02 0x03 
01|[Addr=0x00000002] 0x02 0x03 0x04 
01> 



 

77 

 DYNMEMSET 

Command syntax: 
DYNMEMSET <start_addr> <len> <data_0> ... <data_n> 

Scriptable: Yes  

Available on: Site engines only 

Permission:  
Default: Guest 
Changeable:  Yes 

Parameters: 
start_addr: address of the target device to start writing data to 
len: bytes number to write (max. 16) 
data: bytes to write 

Answer data: 
Success: none 
Error: the error code 

Description: 

Writes len bytes to the dynamic memory starting at address 

start_addr. For devices that define size in words (check it out on the 

Memory Map tool of FlashRunner Workbench), use the command 
DYNMEMSETW. 
Dynamic memory is a special memory area that retains its contents only 
as long as FlashRunner is powered. Both hexadecimal and decimal 
digits are accepted. More DYNMEMSET can be sent defining different 
memory areas. 
Please refer to chapter 6 for a detailed description. 

Example: 

#1*DYNMEMSET 0x0000 4 0x00 0x01 0x02 0x03 
01|> 

 

Note: Address 0x00 -> value 0x00  

      Address 0x01 -> value 0x01 

      … 



 

78 

 DYNMEMSET2 

Command syntax: 
DYNMEMSET2 <start_addr> <len> <data stream> 

Scriptable: Yes  

Available on: Site engines only 

Permission:  
Default: Guest 
Changeable:  Yes 

Parameters: 
start_addr: address of the target device to start writing data to 
len: number of bytes to write, max 500 (see below) 
data stream: bytes stream to write defined by hexadecimal digits 

Answer data: 
Success: none 
Error: the error code 

Description: 

Writes len bytes to the dynamic memory starting at address addr. 
Devices which defines size in words (check it out on Memory Map tool 
of FlashRunner Workbench), see the command DYNMEMSETW2. 
Dynamic memory is a special memory area that retains its contents only 
as long as FlashRunner is powered. More DYNMEMSET can be sent 
defining different memory areas. 
Like all commands, the maximum number of characters for a line is 
1024. This means that, depending on the first part of the command, len 
cannot be higher than 500. 
Please refer to chapter 6 for a detailed description. 

Example: 

#1*DYNMEMSET2 0x0000 4 AB123402 
01|> 

 

Note: Address 0x00 -> value 0xAB  

      Address 0x01 -> value 0x12 

      … 



 

79 

 DYNMEMSETHEADER 

Command syntax: 
DYNMEMSETHEADER <crypto_header> 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
crypto_header: bytes stream of the crypto header to use to decrypt 

the dynamic data defined by hexadecimal digits. 
The crypto header is 768 digits long (384 bytes) 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets the crypto header of dynamic data. Dynamic data sent after this 
command are meant to be encrypted until the crypto header is cleared 
with DYNMEMCLEARHEADER. 

Example: 

#1*DYNMEMSETHEADER 

736ADE84C5A1B1D9D27749E1D01ED3C67895170B5461243A2D771BA6E

8E655C907551C306D1CCCC99445159EB21324D543E0510C2C7783D332

E7F36283E55097F2A8681C5C4D890573F89000583504C47F9FC1BE945

7F88D236A7720C5E5996A6E50AD524715F997992D513F12409B29BADA

6EE736CF201D56FDFF1BF5965B37F91CBFD1992E9FB2BFE0D7804EA45

DF417EB8FEF20DF88A740E8C435D35E8540680DF2C7D5F3778E35903D

E7E1F055B1B2CDCE52F3FE73FE97952467E85D5B890957CE31DDB58D4

46E8BFFF06343ACBAFB0B51A74B43782889EBA49B9E795FB656B197D2

169E8105435EE54E6EE42801DC9C1F422AB90AE237AAD35D6BAD4CD39

8ABC3BF6DF97ACB42106B02A996128E2B4065421308F209C88AEEC2A7

2CF8CF95BBEC2C87A226B40B8D6257FF00D0EFC61FA686B4E61CC319D

D317FCF9C9376A6467D1AD1BA9B505A1F62A580B974AC7397172D1013

0896E032D6491F8CFF1040EFD06FAA2A8E228C323284141AB8A601998

148B0AC8871416A727083D3E93D 
01|> 



 

80 

 DYNMEMSETW 

Command syntax: 
DYNMEMSETW <start_addr> <len> <data_0> ... <data_n> 

Scriptable: Yes  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
start_addr: address of the target device to start writing data to 
len: words number to write (max. 16) 
data: words to write 

Answer data: 
Success: none 
Error: the error code 

Description: 

Writes len words to the dynamic memory starting at address 

start_addr. This command is only for devices that define size in 

words (check it out on the Memory Map tool of FlashRunner 
Workbench), for other devices see the command DYNMEMSET. More 
DYNMEMSETW can be sent defining different memory areas. 
Please refer to chapter 6 for a detailed description. 

Example: 

#1*DYNMEMSETW 0x0000 4 0x2301 0x6745 0xAB89 0xEFCD 
01|> 

 
Note: Address 0x00 -> value 0x01  

      Address 0x01 -> value 0x23 

      … 



 

81 

 DYNMEMSETW2 

Command syntax: 
DYNMEMSETW2 <start addr> <len> <data stream> 

Scriptable: Yes  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
start_addr: address of the target device to start writing data to 
len: number of words to write (max. 500) 
data_stream: words stream to write defined by hexadecimal digits 

Answer data: 
Success: none 
Error: the error code 

Description: 

Writes len words to the dynamic memory starting at address 

start_addr. This command is only for devices that define size in 

words (check it out on the Memory Map tool of FlashRunner 
Workbench), for other devices see the command DYNMEMSET2. More 
DYNMEMSET can be sent defining different memory areas. 
Like all commands, the maximum number of characters for a line is 
1024. This means that, depending on the first part of the command, len 
cannot be higher than 500. 
Please refer to chapter 6 for a detailed description. 

Example: 

#1*DYNMEMSETW2 0x0000 4 0123456789ABCDEF 
01|> 

 

Note: Address 0x00 -> value 0x01  

      Address 0x01 -> value 0x23 

      … 



 

82 

 ECHO 

Command syntax: 
ECHO <string> 

Scriptable: Yes 

Available on: Master and site engines 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
string: the string to ECHO 

Answer data: 
Success: the string 
Error: the error code 

Description: 

ECHO the whole command on the log and on the terminal. The 
maximum length of the command is 1024 characters. This command is 
always printed on the log, independently from the log level selected 
(see SETLOGLEVEL command). 

Example: 

#1*#ECHO This is a dummy string. 

01|#1*ECHO This is a dummy string. 

01> 

  



 

83 

 FORCEDRIVER 

Command syntax: 
FORCEDRIVER <driver_name>  

Scriptable: Yes, before #LOADDRIVER 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
driver_name: the driver to load 

Answer data: 
Success: none 
Error: the error code 

Description: 

Loads a different driver in place of the one specified in the 
#LOADDRIVER command. It can be used to have different versions of 
the same driver in the FlashRunner and call the desired one. 

After the project is executed, this configuration is reset. In fact, the 
suggested usage of this command is to place it at the beginning of the 
project file between the !ENGINEMASK and the #LOADDRIVER 
command.  There is also the command #UNFORCEDRIVER to 
manually reset this configuration, but this is actually redundant. 

Example: 

#1*FORCEDRIVER <libespressif_101.so> 
01> 

  



 

84 

 FRBREAD 

Command syntax: 
FRBREAD <address> <length> [page_size] [fill_value] 

Scriptable: No 

Available on: Site engines only 

Permission: 
Default: None 
Changeable:  Yes 

Parameters: 
address: the address where to start reading 
length: length of the read, max 128 bytes 
page_size: align data to a page size 
fill_value: fill value when there are no data in the FRB 

Answer data: 
Success: the data inside the FRB 
Error: the error code 

Description: 

Read the data inside the loaded FRB (with TPSETSRC command). Max 
128 bytes for each read. The data can be aligned to a specific page 
size and a fill value can be set (default is 0xFF). This command is 
disabled by default for security reasons, since using this you could also 
read decrypted data from an FRS. To enable it the User Management 
has to be enabled and the permission level changed. Please, refers to 
the chapter “Data Protection System”.  

Example: 

#1*#TPSETSRC 128_512.frb 
01> 
#1*FRBREAD 0x00 0x03 
01|[Addr=0x00000000] 0x00 0x01 0x02 
01> 

  



 

85 

 FRBREADCMAC 

Command syntax: 
FRBREADCMAC  

Scriptable: No 

Available on: Master and site engines 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: the CMAC of the FRB 
Error: the error code 

Description: 

Calculates CMAC of the previously set FRB file. CMAC value is 
calculated based on every FRB byte. Must be preceded by TPSETSRC 
command 

Example: 

#1*TPSETSRC 128B.frs 
01> 
#1*FRBREADCMAC 

01|A145745E72467E58865DBD8843E2BE4C 

01|> 

  



 

86 

 FRBREADCRC 

Command syntax: 
FRBREADCRC  

Scriptable: No 

Available on: Master and site engines 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: the CRC of the FRB 
Error: the error code 

Description: 

Calculates CRC of the previously set FRB file. CRC value is calculated 
based on every FRB byte. Must be preceded by TPSETSRC command 

Example: 

#1*#TPSETSRC 128_512.frb 
01> 
#1*FRBREADCRC 
01|CE95C071 
01> 

  



 

87 

 FSCMAC 

Command syntax: 
FCSMAC <type> <filename> <key_length> 

<encrypted_key> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
type: filetype you want to analyse: could be PRJ, LIB, 

FRB, LIC or LOG 
filename: file to be used to calculate the CMAC 
key_length: key length which can be: 16, 24 or 32 bytes 

(optional) 
encrypted_key: data stream containing the secret key encrypted 

with the public key (optional) 
Answer data: 

Success: the CMAC value 
Error: the error code 

Description: 

Calculate and return the CMAC of a file. 
For FRS files which includes the CMAC, it just reads the value from its 
header and the parameters key_length and encrypted_key are not 
needed.  

Example: 

#55*FSCMAC FRB 128B.frs 

55|CMAC = A145745E72467E58865DBD8843E2BE4C 

55|> 

 

#55*FSCMAC PRJ test.prj 16  

c06ebdd1f29f07df37550e4b2fff865698c992d8296ef38c124

44ed023d52a48d23aea6ca6aee069111781c454d2004be53113

4038352233362c0d215a51e3afccfc81acff892e380181b98a7

e3a92d58a1ae1a35634dc445442da4bae8bdf8d5b79048e2edf

1b19ea256d6401c086b4c3b2141a2be40ce903aa534fc5e205c



 

88 

9054827a74aa3b48a4f241668cbae9096e22fe15459ee918053

1eabd7a9839b5085d373f79b9be71561973fcb9e87f08e596b4

bcfa29f69830a8c6ed68dce37d9d86dfe7908b5cf36ea424fc1

bec204d833b17230002b721c923236bde869d9301eee2c87fa4

907b52628f4ec55ec3b95def91d52999a52352c2e3448f82202

a4b1ff95d0dd25c3e31c1a0947eaa0066222443e7050f421dc1

9d6deb7e77239440d81822fd5cc0a18766f9a2f0a78fc5fbd86

c14b67f9fd102fcd07f481c15d99173f5cbb69be72121c42835

31623bb2167229830e6e0ad70cd2601073d0aea631cf0149ea1

da7476ef4152ae1ea2d4d16e68982f818eb858ea7ee3dbfe399

c2b 

55|CMAC = 97DD6E5A882CBD564C39AE7D1C5A31AA 

55|> 



 

89 

 FSCOUNT 

Command syntax: 
FSCOUNT <type> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
type: filetype you want to analyse: could be PRJ, LIB, 

FRB, LIC or LOG 
Answer data: 

Success: the number of files contained in the specified folder 
Error: the error code 

Description: 

Count the number of files contained in the specified folder. 
Example: 

#55*FSCOUNT LIC 

55|10146 

55|> 



 

90 

 FSCRC 

Command syntax: 
FSCRC <type> <filename> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
type: filetype you want to analyse: could be PRJ, LIB, 

FRB, LIC or LOG 
filename: file to be used to calculate the CRC32 

Answer data: 
Success: the CRC32 value 
Error: the error code 

Description: 

Calculate and return the CRC32 of a file. 
For FRB files it just reads the value from its header.  

Example: 

#55*FSCRC LIB libdefault.so 

55|CRC = 0x39153D78 

55|> 



 

91 

 FSEXIST 

Command syntax: 
FSEXIST <type> <filename> 

Scriptable: No  

Available on: Master engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
type: filetype you want to check: could be PRJ, LIB, FRB, 

LIC or LOG 
filename: file to retrieve 

Answer data: 
Success: none 
Error: the error code 

Description: 

Check if a file of a specific file type does exist in FlashRunner storage 
memory or not. 

Example: 

#55*FSEXIST PRJ test.prj 
55|>



 

92 

 FSGETCONTROL 

Command syntax: 
FSGETCONTROL 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None. 

Answer data: 
Success: none 
Error: the error code 

Description: 

Retrieves the read value from the lines belonging to the control 
connector. 

Example: 

#55*FSGETCONTROL 

55|Start line read value is: 1  
55|Control lines read value is: 31  
55|>



 

93 

 FSLS 

Command syntax: 
FSLS <type> <offset> <count> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
type: directory you want to list: could be PRJ, LIB, FRB, 

LIC or LOG 

offset: starting point of the list of files to be returned 
(optional). 

count: number of files to be returned (optional). 

Answer data: 
Success: the current directory content 
Error: the error code 

Description: 

Lists the contents of the current directory in the FlashRunner and their 
size in bytes. 

Example: 

#55*FSLS PRJ 
55|ATXMEGA128A4.prj - 1019 
55|teridian.prj - 770 
55|atxmega.prj - 1036 
55|test.prj - 1067 
55|>



 

94 

 FSLS2 

Command syntax: 
FSLS2 <type> <offset> <count> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
type: directory you want to list: could be PRJ, LIB, FRB, 

LIC or LOG 

offset: starting point of the list of files to be returned 
(optional). 

count: number of files to be returned (optional). 

Answer data: 
Success: the current directory content 
Error: the error code 

Description: 

Lists the contents of the current directory in the FlashRunner, their size 
in bytes and the timestamp (GMT) of their last change. 

Example: 

#55*FSLS PRJ 0 4 
55|ATXMEGA128A4.prj - 1019 - 743849183 
55|teridian.prj - 770 - 1334997983 
55|atxmega.prj - 1036 - 1348562783 
55|test.prj – 1067 - 1569746783 
55|>



 

95 

 FSRM 

Command syntax: 
FSRM <type> <filename> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Admin 
Changeable:  Yes 

Parameters: 
type: filetype you want to remove: could be PRJ, LIB, 

FRB, LIC or LOG 
filename: file to remove 

Answer data: 
Success: none 
Error: the error code 

Description: 

Removes a file stored in the host system to FlashRunner. 
The user can also use the “*“ character as filename, this will remove all 

files from the selected folder. 
To remove the log file, please use the command CLRLOG. 

Example: 

#55*FSRM PRJ test.prj 
55|>



 

96 

 FSSETCONTROL 

Command syntax: 
FSSETCONTROL <signal_name> <signal_value> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Admin 
Changeable:  Yes 

Parameters: 
signal_name: could be BUSY|CH1|CH2...|CH16 
signal_value: could be OFF|ON for BUSY signal or 

OFF|PASS|FAIL for CH1...|CH16 channels 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets a signal belonging to control connector to a defined value. 
PASS is low logic level, FAIL is high logic level. 

Example: 
#55* FSSETCONTROL CH1 PASS 
55|>



 

97 

 GENCRYPTOKEY 

Command syntax: 
GENCRYPTOKEY 

Scriptable: No  

Available on: Site engines only 

Parameters: 
None 

Permission: 
Default: Protected 
Changeable:  Yes 

Answer data: 
Success: none 
Error: the error code 

Description: 

Generates the private and public keys used for the encryption and 
decryption process. 
This operation requires up to one minute to be executed. 
In case another pair of keys were already present, they will be 
overwritten and all the data encrypted with the old keys cannot be 
decrypted anymore. 

Example: 

#55* GENCRYPTOKEY 
55|>



 

98 

 GETADMINTIMEOUT 

Command syntax: 
GETADMINTIMEOUT 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Admin 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: ADMIN timeout in seconds 
Error: the error code 

Description: 

Get the ADMIN session timeout in seconds. Check the chapter “Data 
Protection System” for more details.  

Example: 

#55*GETADMINTIMEOUT 

55|60 s 
55|>



 

99 

 GETCMDLEVEL 

Command syntax: 
GETCMDLEVEL <command> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
command: the command to get the security level 

Answer data: 
Success: command level 
Error: the error code 

Description: 

Get the command level when the User Management is active. Check 
the chapter “Data Protection System” for more details.  

Example: 

#55*GETCMDLEVEL DYNMEMSET 

55|GUEST 
55|>



 

100 

 GETCOUNTER 

Command syntax: 
GETCOUNTER 

Scriptable: No 

Available on: Master engine only 

Parameters: 
None 

Permission: 
Default: Guest 
Changeable:  No 

Answer data: 
Success: none 
Error: the error code 

Description: 

Returns current flash counter status. That number represents the 
remaining flashing cycles available in GUEST mode. Check the chapter 

“Data Protection System” for more details. 

Example: 

#55*GETCOUNTER 

55|16 

55|>



 

101 

 GETDATE 

Command syntax: 
GETDATE 

Scriptable: No  

Available on: Master engine only 

Parameters: 
None 

Permission: 
Default: Guest 
Changeable:  No 

Answer data: 
Success: current date 
Error: the error code 

Description: 

Returns the current date set on FlashRunner.  
Date format is <sec> <min> <hour> <date> <month> <year>.  
<hour> is in 24-hour time format settings. 

Example: 

#55*GETDATE 
55|current date: 8 4 15, 18.39.22 
55|>



 

102 

 GETENGSTATUS 

Command syntax: 
GETENGSTATUS 

Scriptable: No  

Available on: Site engine only 

Parameters: 
None 

Permission: 
Default: Guest 
Changeable:  No 

Answer data: 
Success: the status of the engine 
Error: the error code 

Description: 

Returns the actual engine status when a RUN command is in execution. 
The answer is composed of 16 (or 32 for FlashRunner HS) characters, 
one for each channel starting from left, and the value could be “P”, “R”, 
“F” or “-”. “P” stays for PASS status and means that the last 
programming on this channel passed successfully. “R” stays for RUN 
status and means that the channel is still executing commands. “F” 
character stays for FAIL status and means that the last programming 
on this channel failed. “-” character means that on this product this 
channel is not enabled. At power-up, there is one more status, 
represented by the “_”, which means IDLE, so the selected channel 
never executed any command since power-up. 

Example: 

#55*GETENGSTATUS 
55|P_______-------- 
55|> 



 

103 

 GETFREEMEM 

Command syntax: 
GETFREEMEM 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: memory usage details 
Error: the error code 

Description: 

This command shows the memory usage details. 
The total size doesn’t correspond to the SD memory, it’s just the size of 
the partition dedicated to the user data. 
Usable memory is the amount of memory available considering that the 
log.txt file can reach a maximum of 200MB. If the log file reaches that 
size, then it’s cropped and the oldest logs are removed. 

Example: 

#55*GETFREEMEM 

55|Total size: 1356.6 MB 

55|Memory used: 677.1 MB 

55|Memory free: 609.5 MB 

55|Percentage: 53% 

55|log.txt size: 0.9 MB 

55|Usable memory: 410.3 MB 

55|>



 

104 

 GETIP 

Command syntax: 
GETIP 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None. 

Answer data: 
Success: the IP information 
Error: the error code 

Description: 

Returns FlashRunner IP address, network and gateway 

Example: 

#55*GETIP 
55|IP: 192.168.1.137 
Netmask: 255.255.255.0 
Gateway: 192.168.1.1 

55|> 

  



 

105 

 GETLOGLEVEL 

Command syntax: 
GETLOGLEVEL 

Scriptable: No 

Available on: Master 

Permission: 
Default: Guest 
Changeable:  No 

Parameters:  
None 

Answer data: 
Success: log verbosity level. It's a number within [1-6] range 
Error: the error code 

Description: 

Returns the log verbosity level. Lower numbers mean more verbosity 
on the log file. 

Example: 

#55*GETLOGLEVEL 
55|1 

55|>



 

106 

 GETPROGRESSBAR 

Command syntax: 
GETPROGRESSBAR  <channel_num> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
channel_num: number of the channel to get the progress bar 

Answer data: 
Success: operation and progress percentage 
Error: the error code 

Description: 

Returns the progress percentage of the running operation of 
program/verify for the selected memories by the command 
PROGRESSBAR. See chapter 11 for more details. 

Example: 
#55*GETPROGRESSBAR 2 

55|PROGRAM F: 1% 

55|> 

  



 

107 

 GETPUBKEY 

Command syntax: 
GETPUBKEY 

Scriptable: No  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: public key 
Error: the error code 

Description: 

Returns the public key that must be used to encrypt data that can be 
decrypted only by that specific FlashRunner. 
In case the crypto key is not present, an error is returned. 

Example: 

#55*GETPUBKEY 

55|-----BEGIN PUBLIC KEY----- 

MIIBojANBgkqhkiG9w0BAQEFAAOCAY8AMIIBigKCAYEAgceuZhUirL4gI

FXvFMTUMwycQIgWgFrytplUbI9t4RpL+SKIeqcqZkPOBJ2HLoEgKfhQls

Est8btGAxWgjgihwSeRZ/sFcyfNBq+MLm+Hvft0QRDDEKY0mh4cafJlBs

8GUdGo1/p1i6p133haIipaaGQrsOArTt/5TMNIGEywEx/SUbsks4SX5Dj

4CWhijqmL/PQhq9p2XqL29TMDxtNmJ2f/DrXHaUWrUCe6tgxCc2zt3h3Z

BLaVEPs+Ntf7UtvKIRC7fmeUr9hDz4QrOoV60gLMorDX3zmVGqEh6GpcW

YQPGcKt/v8ZeKklqdFc3h3jJma21h9E4+2R/zRerzOoE/h7+GGbw5uT+r

FxTOiFXmchnEaCSfPmHEL8k/h6q4R8KaM9bEbGT2VDR336saK1nN4OfLS

yx4x2kffC7WKuDPzDuwpRiNOX4tW6Mxg6VvEfBHGkvt5nqPBu5PdmIICi

scTdZoH3PZ87C5EuJIPDjG7P6aQSYZBlIFYTVDVbJflAgMBAAE= 

-----END PUBLIC KEY----- 

55|>



 

108 

 GETVPROG 

Command syntax: 
GETVPROG <vprog_line> 

Scriptable: No  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
vprog_line: vprog line (0 or 1) to read for the selected channel 

Answer data: 
Success: current voltage read value 
Error: the error code 

Description: 

Returns the read value for the selected VPROG line in mV. 

Example: 

#1*GETVPROG 0 
01|VPROG0=3295 
01|>



 

109 

 HELP 

Command syntax: 
HELP <lib_name.so> 

Scriptable: No  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
lib_name.so: library name for which help table has to be shown 

Answer data: 
Success: help table 
Error: the error code 

Description: 

Returns help table, which contains commands description 

Example: 

#1*HELP libpic16.so 
TPCMD MASSERASE <F|E|C> 
TPCMD ERASE <F> <start_addr> <size> 
TPCMD BLANKCHECK <F|E|I|W> or BLANKCHECK <F|E|I|W> <start_addr> 

<size> 
TPCMD PROGRAM <F|E|I|W> or PROGRAM <F|E|I|W> <start_addr> <size> 
TPCMD VERIFY <F|E|I|W> <R> or VERIFY <F|E|I|W> <R> <start_addr> 

<size> 
TPCMD READ <F|E|I|W> <start_addr> <size> 
TPCMD DUMP <F|E|I|W> <start_addr> <size> 
TPCMD RUN or TPCMD RUN <delay(sec)> 
TPCMD CONNECT 
TPCMD DISCONNECT 
01|> 



 

110 

 HSMEMFORMAT 

Command syntax: 
HSMEMFORMAT 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Admin 
Changeable:  Yes 

Parameters: 
None 

Answer data: 
Success: None 
Error: the error code 

Description: 

Erase all files contained in High-Speed Memory (Only for FlashRunner 
High-Speed). 

Example: 

#55*HSMEMFORMAT 

33|Delete all files on HSMEM. 

33|> 



 

111 

 ISMEMENOUGH 

Command syntax: 
ISMEMENOUGH <size_kB> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
size_kB: Size (kB) of memory to be checked if it is available 

Answer data: 
Success: YES or NO 
Error: the error code 

Description: 

Returns YES or NO if the size of memory asked is available. 
Attention: the parameter must be expressed in kilobytes. 

Example: 

#55*ISMEMENOUGH 1024 

YES 

55|> 

 

#55*ISMEMENOUGH 1048576 

NO 

55|> 



 

112 

 ISPANELMODE 

Command syntax: 
ISPANELMODE 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: the status of panel mode: ON, OFF, 2, 3 or 4 
Error: the error code 

Description: 

Returns the status of panel mode. Not available on FlashRunner HS 
model. 

Example: 

#55*ISPANELMODE 
55|PANEL MODE OFF 
55|> 

 

#55*ISPANELMODE 

55|PANEL MODE 2 

55|>



 

113 

 LICERASE 

Command syntax: 
LICERASE 

Scriptable: No  

Available on: Site engines only 

Permission: 
Default: Admin 
Changeable:  Yes 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

This command is available only on FlashRunner HS model. 
It erases all Active Module’s currently installed licenses. 

Example: 

#1*LICERASE 
1|>  



 

114 

 LICINSTALL 

Command syntax: 
LICINSTALL <license_filename> 

Scriptable: No  

Available on: Site engines only 

Permission: 
Default: Admin 
Changeable:  Yes 

Parameters: 
lic_filename: license file or can be ’*’ 

Answer data: 
Success: none 
Error: the error code 

Description: 

This command is available only on FlashRunner HS model. 
It installs new licenses into an Active Module which is selected by 
sending this command to the Active Module related channel. Before 
applying this command you need first to download license file into 
FlashRunner HS License folder. 

Example: 

#1*LICINSTALL MTFC128GAP.lic 

1|> 

  



 

115 

 LISTLIC 

Command syntax: 
LISTLIC 

Scriptable: No  

Available on: Master engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: license list 
Error: the error code 

Description: 

Returns the stored license list. 

Example: 

#55*LISTLIC 
*************************************************** 

R7F7010274.lic 

License type: DEVICE. Only R7F7010274 is activated 

Serial Number: 20027 

Creation Date: 14.04.2016 

Expiration Date: 9999/12/31 

Algorithm Name: librh850.so 

Manufacturer: RENESAS 

Device Code: R7F7010274 

*************************************************** 

55|>  

  



 

116 

 LISTLICAM 

Command syntax: 
LISTLICAM 

Scriptable: No  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: Active Module license list. 
Error: the error code. 

Description: 

This command is available only on the FlashRunner HS model. 
Returns Active Module stored license list. You can only install licenses  
matching the Active Module serial number 

Example: 

#2*LISTLICAM 

#0: ADESTO - AT25Q - AT25QL641 - SERMEM4 

02|> 
  



 

117 

 LOADDRIVER 

Command syntax: 
LOADDRIVER <driver_name> <silicon_name> <family_name> 

<device_name> 

Scriptable: Yes  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
driver_name: driver filename which supports the selected device. 
silicon_name: silicon producer which supports the selected device. 
family_name: family name which supports the selected device. 
device_name: name of the selected device. 

Answer data: 
Success: none. 
Error: the error code. 

Description: 

Load the driver and check the license. 

Example: 

#1*#LOADDRIVER libfsl_e.so STMICROELECTRONICS SPC58 

SPC584B70 
01|>



 

118 

 LOGIN 

Command syntax: 
LOGIN <user> <password> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
user: username: ADMIN or GUEST 
password: GUEST has dummy password (any value 

accepted). ADMIN has the  password set with 
SETADMINPWD command 

Answer data: 
Success: none 
Error: the error code 

Description: 

Login as ADMIN or GUEST. Check the chapter “Data Protection 
System” for more details. 

Example: 
#55*LOGIN ADMIN applepie 
55|>



 

119 

 LOGOUT 

Command syntax: 
LOGOUT 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Admin 
Changeable:  No 

Parameters: 
None 

Answer data: 

Success: none 
Error: the error code 

Description: 

It exits from ADMIN account and get back to GUEST account. Check 
the chapter “Data Protection System” for more details. 

Example: 

#55*LOGOUT 
55|>



 

120 

 PROGRESSBAR 

Command syntax: 
PROGRESSBAR ON <mem_type> <end_addr> 

Scriptable: Yes  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
mem_type: the memory to monitor (i.e: F, C, D…) 
end_addr: address to stop the monitoring 

Answer data: 
Success: the program/verify progress is monitored 
Error: the error code 

Description: 

It enables the monitoring of the program/verify process for the selected 
memory. It has to be used in combination with the DLL. With the new 
DLL in C# the user has to establish a connection with the port 
<FR_ip>:1236 where the FR will write the progress of the programming. 
From the DLL side, it is necessary to open a FR_Logger() and to read 
the communication to extract the programming/verify progress. With the 
old DLL in C++, the user can use the command GETPROGRESSBAR. 
See chapter 11 for more details. 

Command Example: 

#2*PROGRESSBAR ON F 0x100000 

02|> 

 

   

  



 

121 

 REBOOT 

Command syntax: 
REBOOT 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Reboot FlashRunner. 

Example: 
#55*REBOOT 
55|>



 

122 

 RLYCLOSE 

Command syntax: 
RLYCLOSE 

Scriptable: Yes  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Close the Relay Barrier of the specified channel to connect it to the 
target.  

Example: 

#1*RLYCLOSE 
01|>



 

123 

 RLYOPEN 

Command syntax: 
RLYOPEN 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Open the Relay Barrier of the specified channel to disconnect it from 
the target. 

Example: 

#1*RLYOPEN 
01|>



 

124 

 RSTENGSTATUS 

Command syntax: 
RSTENGSTATUS 

Scriptable: No  

Available on: Master and site engines 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None  

Answer data: 
Success: none 
Error: the error code 

Description: 

Reset engine status internal value.  
Sending it to the master will reset all engine statuses, while sending it 
to a single site engine will just reset that single engine status 

Example: 

#55*RSTENGSTATUS 
55|>



 

125 

 RUN 

Command syntax: 
RUN <project_name> [frb_name] 

Scriptable: Yes  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
project_name: project filename to run 
frb_name: the frb to use 

Answer data: 
Success: none 
Error: the error code 

Description: 

Starts a project stored inside FlashRunner and defined by its filename.  
When running a project on a channel not included in the project, the 
command will be successfully executed, but you see a warning 
message into the log because nothing is actually done by that channel. 

Example: 

#1*RUN test.prj 
01|>



 

126 

 SETADMINPWD 

Command syntax: 
SETADMINPWD <password> 

Scriptable: No 

Available on: Master engines only 

Permission: 
Default: Protected 
Changeable:  No 

Parameters: 
password: new password for ADMIN user 

Answer data: 
Success: none 
Error: the error code 

Description: 

Set up new password value for ADMIN user. Password can be up to 40 
characters long. Check the chapter “Data Protection System” for more 
details. 

Example: 

#55*SETADMINPWD myPassword1234! 
55|> 

  



 

127 

 SETADMINTIMEOUT 

Command syntax: 
SETADMINTIMEOUT <seconds> 

Scriptable: No 

Available on: Master engines only 

Permission: 
Default: Protected 
Changeable:  No 

Parameters: 
seconds: session timeout for ADMIN user 

Answer data: 
Success: none 
Error: the error code 

Description: 

Set up a session timeout for ADMIN user in seconds. After the time is 
elapsed, the ADMIN is logged out automatically. The value range 
between 3 seconds and 24 hours. Check the chapter “Data Protection 
System” for more details. 

Example: 

#55*SETADMINTIMEOUT 20 
55|> 



 

128 

 SETCOUNTER 

Command syntax: 
SETCOUNTER <n_cycles> 

Scriptable: No 

Available on: Master engine only 

Permission: 
Default: Protected 
Changeable:  No 

Parameters: 
n_cycles: number of allowed cycles 

Answer data: 
Success: none 
Error: the error code 

Description: 

Set up a flash counter. After it is set, GUEST mode will have n_cycles 

flashing cycles allowed. To stop it just use n_cycles = 0. Check the 

chapter “Data Protection System” for more details. 

Example: 

#55*SETCOUNTER 10 

55|Counter has been successfully set. It will be 

active when logged in GUEST user. 

55|>



 

129 

 SETCMDLEVEL 

Command syntax: 
SETCMDLEVEL <level> <command> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Protected 
Changeable:  No 

Parameters: 
level: ADMIN, GUEST, PROTECTED or NONE 
command: the command to change the security level 

Answer data: 
Success: none 
Error: the error code 

Description: 

Change the command level when the User Management is active. 
Check the chapter “Data Protection System” for more details.  

Example: 

#55*SETCMDLEVEL ADMIN DYNMEMSET 
55|>



 

130 

 SETDATE 

Command syntax: 
SETDATE <sec> <min> <hour> <date> <month> <year> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Admin 
Changeable:  Yes 

Parameters: 
sec: seconds 
min: minutes 
hour: hours in 24-hour time format. 
date: date 
month: month 
year: year (last two digits) 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets the current date on FlashRunner.  
Date format is <sec> <min> <hour> <date> <month> <year>.  
<hour> is in 24-hour time format settings. 

Example: 

#55*SETDATE 51 46 21 30 11 15 
55|>



 

131 

 SETDIO 

Command syntax: 
SETDIO <DIO_num> <logic_state> <reference_mV> 

Scriptable: Yes  

Available on: Site engine only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
DIO_num: the DIO, from 0 to 7. 
logic_state: 1 = high level, 0 = low level, H = high impedance. 
reference_mV: voltage in mV for high level. Optional if VPROG0 

has been already set. 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets DIO_num to the requested logic state. This command can be used 
to keep in reset a device during the programming. 
In case the parameter reference_mV isn’t set and VPROG0 hasn’t 

been previously set, this command returns an error. 
Otherwise, if the parameter reference_mV is set and VPROG0 has 

been previously set, the new voltage value is ignored. 
This command doesn’t enable the output of VPROG0 line, unless it has 
been previously enabled. 
Attention: do not use this command for DIOs controlled by the driver. 
The driver may remove the setting during the #TPSTART, for this 
reason, it should be placed after it if used in a script. 

Example: 

 In the script, i.e. to keep in reset a device during the programming: 

 #TPSTART 

 #SETDIO 7 1 3300 

 #TPCMD CONNECT 

 



 

132 

 SETFRSPWD 

Command syntax: 
SETFRSPWD <password> 

Scriptable: No 

Available on: Master engines only 

Permission: 
Default: Protected 
Changeable:  No 

Parameters: 
password: new password used to decrypt FRS files 

Answer data: 
Success: none 
Error: the error code 

Description: 

Set up new password value used to decrypt FRS files. Password can 
be up to 40 characters long. 

Example: 

#55*SETFRSPWD myPassword1234! 
55|> 

  



 

133 

 SETIP 

Command syntax: 
SETIP <IP> <netmask> <gateway> 

Scriptable: No  

Available on: Master engine only 

Permission: 
Default: Admin 
Changeable:  Yes 

Parameters: 
IP: new programmer IP address 
netmask: new programmer netmask 
gateway: new programmer gateway 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets the new network settings for LAN peripheral. Once executed, you 
must reboot FlashRunner in order to enable new settings. 

Example: 

#55*SETIP 192.168.1.128 255.255.255.0 192.168.1.1 
55|>



 

134 

 SETLOGLEVEL 

Command syntax: 
SETLOGLEVEL <level> 

Scriptable: No 

Available on: Master engine only 

Permission: 
Default: Admin 
Changeable:  Yes 

Parameters: 
level: log verbosity level. It's a number within [1-6] range 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets the log verbosity level. Lower numbers mean more verbosity on 
log file. 

Example: 

#55*SETLOGLEVEL 1 
55|>



 

135 

 SETMUX 

Command syntax: 
SETMUX <level> 

Scriptable: No 

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
level: 0: isolate all outputs, 1: enable first bank, 2: enable 

second bank 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets demultiplexer. “0” value will isolate all outputs, “1” will enable the 
first bank and “2” value will enable the second bank. This command is 
used in combination with Demultiplexer tool, available only for 
FlashRunner 2.0 8 or 16 channel version. 

Example: 

#55*SETMUX 1 
55|>



 

136 

 SETPANELMODE 

Command syntax: 
SETPANELMODE <level> 

Scriptable: No 

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
level: 0: standard mode, 1: panel mode, 2: eMMC 8bit 

mode, 3: NAND mode, 4: NOR mode 

Answer data: 
Success: none 
Error: the error code 

Description: 

Enable panel mode. This command is not available for FlashRunner 
HS. If the programmer works in panel mode you could only load a single 
communication protocol for all channels. For eMMC 8bit, NAND and 
NOR this setting is necessary to program those devices which use a 
special configuration. 

Example: 

#55*SETPANELMODE 1 
55|>



 

137 

 SETSERIALBAUDRATE 

Command syntax: 
SETSERIALBAUDRATE <baudrate> 

Scriptable: No 

Available on: Master engine only 

Permission:  
Default: Guest 
Changeable:  No 

Parameters: 
baudrate: DEFAULT or HIGH 

Answer data: 
Success: none 
Error: the error code 

Description: 

Change the speed of the Serial connection. DEFAULT is 115200, HIGH 
is 3000000. When powered the FlashRunner always starts with 
115200. The answer to the command, if successful, is done at the new 
speed requested. 

Example: 

#55*SETSERIALBAUDRATE HIGH 

55|> 



 

138 

 SGETAMSN 

Command syntax: 
SGETAMSN 

Scriptable: No 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: the Active Module serial number 
Error: none 

Description: 

Returns the Active Module serial number. Only for FlashRunner High-
Speed. 

Example: 

#01*SGETAMSN  
01|GP123456  

01|> 



 

139 

 SGETENG 

Command syntax: 
SGETENG 

Scriptable: No 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Returns the engine instance number for the requested engine. 

Example: 

#1*SGETENG 
01|Engine N. 0>



 

140 

 SGETERR 

Command syntax: 
SGETERR 

Scriptable: No 

Available on: Master and site engines 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: the error code stack 
Error: none 

Description: 

Returns the error stack of the last error occurred on the selected engine.  
Each line follows the rule:  
ERR--> <err num>|<desc>|[<src file>, <line num>,<func>] 

Example: 

#1*SGETERR 
01|ERR-->05000007|(null)|[file ../Src/pi-algo_api_rw.c, 

line 165, funct API_FrbSet()] 
01|ERR-->05000007|(null)|[file ../Src/pi-algo.c, line 

350, funct cmd_TPSETSRC()] 
01|ERR-->05000007|(null)|[file ../Src/cli-cmd.c, line 

305, funct cmd_RUN()] 
01|> 



 

141 

 SGETSN 

Command syntax: 
SGETSN 

Scriptable: No 

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: the product serial number 
Error: none 

Description: 

Returns the product serial number. 

Example: 

#55*SGETSN  
55|1  
55|> 



 

142 

 SGETVER 

Command syntax: 
SGETVER 

Scriptable: No 

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: The Operating System version 
Error: none 

Description: 

Returns the Operating System version. 

Example: 

#55*SGETVER  
55|3.19 
55|> 



 

143 

 SGETVERALGO 

Command syntax: 
SGETVERALGO <algo_name> 

Scriptable: No 

Available on: Site engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
algo_name: algorithm name 

Answer data: 
Success: algorithm version 
Error: none 

Description: 

Returns the version of the driver indicated as parameter. Usually 
answer is a 3-digit number: 2 less significant are the minor release, the 
other one is the major release. 

Example: 

#1*SGETVERALGO libsermem.so 
01|04.02 
01|>



 

144 

 SGETVERALGOLIST 

Command syntax: 
SGETVERALGOLIST 

Scriptable: No 

Available on: Master engine only. 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: driver version list 
Error: none. 

Description: 

Returns the driver version of all drivers stored inside the programmer. 
Usually answer is a 3-digit number: 2 less significant are the minor 
release, the other one is the major release  

Example: 

#55*SGETVERALGOLIST 
55|libsermem.so – 04.02 
55|libinf_c.so – 02.03 
55|libatxmega.so – 02.00 
55|> 

  



 

145 

 SHA256 

Command syntax: 
SHA256 <type> <filename> 

Scriptable: Yes 

Available on: Master and Sites engines 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
type:  PRJ | LIB | FRB | LIC | LOG | PRJ_FRB 
filename:  filename for which you want to calculate SHA256 

Answer data: 
Success: calculated SHA256value 
Error: the error code 

Description: 

Returns the calculated SHA256 of the selected file. 
If you choose PRJ_FRB type, first it returns the SHA256 of the PRJ file 

selected, then it returns the SHA256 for all FRBs defined in the project. 

Example: 

 1. 

#55*SHA256 FRB 1MB.frb 

55|1MB.frb 

bd69c6afcdec157f287c85849e1eeea684b02cb6e901d0424a8

fd5fb67393b98 

55|> 

 2. 

#55*SHA256 PRJ_FRB example.prj 

55|example.prj 

3e2399f4521a09e3226d3fa205f0c3eff48815537d1c79921a7

9b9349b7e1879 

55|2MB.frb 

bd961b1e6aa3395c990cc71dc2ab84260edef12ced7f712e1c1

a23f3df3a168b 

55|> 



 

146 

 SHUFFLEDIO 

Command syntax: 
SHUFFLEDIO <logic_DIO> <physical_DIO> 

       Or 

SHUFFLEDIO <phys0->DIOx> ... <phys7->DIOx> 

Scriptable: Yes, after the #TPSTART and before the 
#CONNECT 

Available on: Site engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
logic_DIO: the logical DIO (0 to 7), to move 
physical_DIO: the physical DIO (0 to 7), where to move logical DIO 
phys0->DIOx: the logical DIO wanted in the corresponding 

physical position 
Answer data: 

Success: none 
Error: the error code 

Description: 

With the first command syntax, the logical DIO selected is swapped with 
the logical DIO in the physical DIO selected. 
With the second syntax is possible to set the whole DIO map with a 
single command. On the first position, there is the physical DIO-0 and 
the user has to insert the desired logical DIO. On the second position 
there is the physical DIO-1… and so on. 
Each logical DIO must have a unique physical position. In case this is 
not true, the DIO map is reset to the default value. 
The DIO map is reset to the default value at the #TPEND. 

Example: 

1. Move the logical DIO-3 in the physical DIO-7. The logical DIO on physical 
DIO-7 is moved in the physical DIO-3. 

#1*SHUFFLEDIO 3 7 

01|> 

The new DIO map of the example above is:  
#1*SHUFFLEDIO_GETMAP 



 

147 

01|DIO MAP: 0 1 2 7 4 5 6 3 

01|> 

 
2. Set the whole new DIO map: 

#1*SHUFFLEDIO 0 2 5 3 4 7 1 6 

01|> 

The new DIO map of the example above is:  
#1*SHUFFLEDIO_GETMAP 

01|DIO MAP: 0 2 5 3 4 7 1 6 

01|> 

 
 



 

148 

 SHUFFLEDIO_GETMAP 

Command syntax: 
SHUFFLEDIO_GETMAP 

Scriptable: Yes  

Available on: Site engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: the pinout 
Error: the error code 

Description: 

Shows the actual Pin Map of the channel selected. The first position 
indicates for the physical DIO-0 the corresponding logical DIO. The 
second position indicates for the physical DIO-1 the corresponding 
logical DIO… and so on. 
The logical DIO-8 is the watchdogfeed DIO. 

Example: 

#1*SHUFFLEDIO_GETMAP 

01|DIO MAP: 0 2 5 3 4 7 1 6 

01|> 

In the example above we have: 
1. On physical DIO-0 the logical DIO-0. 
2. On physical DIO-1 the logical DIO-2. 
3. On physical DIO-2 the logical DIO-5 
4. On physical DIO-3 the logical DIO-3 
5. On physical DIO-4 the logical DIO-4 
6. On physical DIO-5 the logical DIO-7 
7. On physical DIO-6 the logical DIO-1 
8. On physical DIO-7 the logical DIO-6 

 
 



 

149 

 SPING 

Command syntax: 
SPING 

Scriptable: No 

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: SPONG 
Error: the error code 

Description: 

Pings the instrument. Used to verify whether FlashRunner is connected 
to the host system and running correctly. 

Example: 

#55*SPING 
55|SPONG 

55|>



 

150 

 TCSETDEV 

Command syntax: 
TCSETDEV <par_name> <par_value> 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
par_name: parameter name 
par_value: parameter value 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets device-specific and programming algorithm-specific information. 
This command must be sent after the LOADDRIVER command and 

before a TPSTART/TPEND command block. Please note that CRC 

pseudo command is a CRC number based on TCSETDEV data and is 
used to prevent device info tampering. For this reason, you can't 
calculate the CRC but you only can copy it from a working project done 
with FlashRunner Workbench software. 

Example: 

#1*TCSETDEV VDDMIN 1600 
01|>



 

151 

 TCSETPAR 

Command syntax: 
TCSETPAR <par name> <par value> 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
par_name: parameter name 
par_value: parameter value 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets device-specific and programming algorithm-specific device 
parameter. This command must be sent after the LOADDRIVER 

command and before a TPSTART / TPEND command block.  

Example: 

#1*TCSETPAR PWDOWN 20 
01|>



 

152 

 TESTVPROG 

Command syntax: 
TESTVPROG <vprog_line> <mV> <output> 

Scriptable: No 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
vprog_line: VPROG line to read. Could be 0|1 
mV: mV to set in output on selected VPROG line 
output: defines if VPROG line is in output or internally as 

high reference value. Could be ON|OFF 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets up a defined value on vprog lines. 

Example: 

#1*TESTVPROG 0 3300 ON 
01|> 



 

153 

 TPCMD 

Command syntax: 
TPCMD <command> [par1] [par2] ... [parn] 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
command: programming command 
par: zero or more programming command parameters 

Answer data: 
Success: none 
Error: the error code 

Description: 

Performs a programming operation (i.e. mass erase, program, verify, 
etc.) This command must be sent within a TPSTART/TPEND command 

block. Programming commands and their relative parameters are 
device-specific. 

Example: 

#1*TPCMD PROGRAM F 
01|> 



 

154 

 TPEND 

Command syntax: 
TPEND 

Scriptable: Yes 

Available on: Site engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
Success: none 
Error: the error code 

Answer data: 
Success: the product serial number 
Error: none 

Description: 

Ends a programming block. This command must be preceded by a 
TPSTART command. TPCMD commands must be sent within a 

TPSTART/TPEND command block. 
TPSTART/TPEND command block must be preceded by the TCSETPAR 

commands required for your specific target device. The TPEND 

command resets any previously set device-specific and programming 
algorithm-specific parameters. 

Example: 

#1*TPEND  
01|> 



 

155 

 TPSETDUMP 

Command syntax: 
TPSETDUMP <filename> 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
filename: Name of the dump file  

Answer data: 
Success: none 
Error: the error code 

Description: 

Set up the filename which will be created on FlashRunner storage 
memory once TPCMD DUMP command is executed. As FlashRunner 

executes the same project on several channels, each channel will have 
its dump file. For this reason, on the filename indicated with this 
command FlashRunner will apply the prefix “S<chN>_”, where “chN” is 

the channel number to which the dump refers. Dump files are raw binary 
files. 

Example: 

#1*TPSETDUMP dumpfile.bin 
01|> 



 

156 

 TPSETSRC 

Command syntax: 
TPSETSRC <filename> [IGNORE_BLANK_PAGE] 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
filename: name of the file in the binaries folder inside 

FlashRunner 

IGNORE_BLANK_PAGE:  
 avoid programming FRB pages which are filled with 

the blank value 

Answer data: 
Success: none 
Error: the error code 

Description: 

Sets the source of data to be programmed and verified in subsequent 
TPCMD commands. 

The user can also use “DYNMEM” as filename, this keyword will set the 
FlashRunner to use only dynamic memory instead of an FRB file. 
The maximum length of <filename.frb> is 40 characters. 

Example: 

#1*TPSETSRC test.frb  
01|> 



 

157 

 TPSTART 

Command syntax: 
TPSTART 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Starts a programming block. To end a programming block, send the 
TPEND command. TPCMD commands must be sent within a 

TPSTART/TPEND command block. 
The TPSTART command performs some internal initializations and 

prepares FlashRunner to execute subsequent TPCMD commands. 

Example: 

#01*TPSTART 
01|> 



 

158 

 TPUNSETDUMP 

Command syntax: 
TPUNSETDUMP 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Unsets the destination file of data used by the DUMP command (set 
with #TPSETDUMP). 

Example: 

#1*TPUNSETDUMP  
01|>



 

159 

 TPUNSETSRC 

Command syntax: 
TPUNSETSRC 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Unsets the source of data (set with #TPSETSRC) to be programmed 
and verified in subsequent TPCMD commands. 

Example: 

#1*TPUNSETSRC  
01|> 



 

160 

 UNFORCEDRIVER 

Command syntax: 
UNFORCEDRIVER  

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Remove the driver forced with the #FORCEDRIVER command. 

Example: 

#55*UNFORCEDRIVER 
55|> 



 

161 

 UNLOADDRIVER 

Command syntax: 
UNLOADDRIVER 

Scriptable: Yes  

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: none 
Error: the error code 

Description: 

Unload the driver to remove dependencies before updating a new one. 

Example: 

#1*UNLOADDRIVER 
01|> 

  



 

162 

 UNSETADMINTIMEOUT 

Command syntax: 
UNSETADMINTIMEOUT 

Scriptable: No 

Available on: Master engines only 

Permission: 
Default: Protected 
Changeable:  No 

Parameters: 
seconds: remove session timeout for ADMIN user 

Answer data: 
Success: none 
Error: the error code 

Description: 

Remove session timeout for ADMIN user in seconds. Check the chapter 
“Data Protection System” for more details. 

Example: 

#55*UNSETADMINTIMEOUT 
55|> 



 

163 

 VOLTAGEMONITOR 

Reference: For detailed information refer to chapter 10. 

Command syntax: 
VOLTAGEMONITOR <parameter> 
VOLTAGEMONITOR <parameter> <value> 

Scriptable: Yes 

Available on: Site engines only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
parameter: For detailed information refer to chapter 10 
value: For detailed information refer to chapter 10 

Answer data: 
Success: none 
Error: the error code 

Description: 

Monitor the Voltage Level during the programming. For detailed 
information refer to chapter 10 

Example: 

#1*VOLTAGEMONITOR ON ERROR_CONTINUE   log the error 
01|> 

#1*VOLTAGEMONITOR CLEAR_AVERAGE    reset values 
01|>               for both lines 

#1*TPCMD MASSERASE F 

Time for Masserase [...] 

01|> 

#1*VOLTAGEMONITOR READ_AVERAGE     print average  
01|>               for MASSERASE 

  



 

164 

  WATCHDOGFEED 

Command syntax: 
WATCHDOGFEED <frequency> <DIO_num> <duty_cycle> 

[<reference_mV>] 

Scriptable: Yes, between #TPSTART and #CONNECT 

Available on: Site engine only 

Permission: 
Default: Guest 
Changeable:  Yes 

Parameters: 
frequency: frequency of the square wave 
DIO_num: the DIO, from 0 to 7 
duty_cycle: duty cycle of the square wave 
reference_mV: voltage expressed in mV as reference for high level. 

This parameter is optional and if not set the voltage 
would be the same set for the programming. 

Answer data: 
Success: the actual frequency of the square wave 
Error: the error code 

Description: 

Outputs a square wave on the DIO, of the duty cycle and frequency set. 
If the reference_mV isn’t set and VPROG0 hasn’t been previously 

set, the square wave won’t be enabled until the programming flow 
enables it (i.e. during the connect). Otherwise, if the VPROG0 has been 
previously set, the reference_mV is ignored. 

This command doesn’t enable the output of VPROG0 line, it only 
enables the output of the square wave on the DIO selected. 
Attention: this command can cause problems if used for DIO lines 
controlled by the driver, please check the PinMap of the driver. 
The square wave is turned off at the #TPEND command. The user can 
turn off it manually by setting the frequency to 0. It’s important to use 
the same DIO in the command to restore properly the pinout. 

Example: 

 Turn on the square wave: 

#1*WATCHDOGFEED 50 7 50 3300 



 

165 

01|Requested WD frequency: 50 - Actual: 50 

01|>  

 

 

  Turn off the square wave. Physical DIO-7 returns to be the logic DIO-7: 
 #1*WATCHDOGFEED 0 7 50 3300 

01|>  

 

 Script example, the wave starts in connect when there is the power on: 
    #TPSTART 

#WATCHDOGFEED 50 5 50 

#TPCMD CONNECT 

 

Script example, the wave starts before the connect: 
#TPSTART 

#WATCHDOGFEED 50 5 50 3300 

#TPCMD CONNECT 

  



 

166 

 WHOAMI 

Command syntax: 
WHOAMI 

Scriptable: Yes 

Available on: Master engine only 

Permission: 
Default: Guest 
Changeable:  No 

Parameters: 
None 

Answer data: 
Success: Prints enabled modes and currently logged user 
Error: the error code 

Description: 

It returns enabled modes and the currently logged user. Check the 
chapter “Data Protection System” for more details. 

Example: 

#55*WHOAMI 

Active users listed below. User currently logged is 

highlighted with * symbol: 

   ADMIN 

-> GUEST 

55|>  



 

167 

5 Projects 

Projects are sequences of commands collected in a text file. This 
is a handy way to store all the target device information and user 
settings needed for FlashRunner. Projects are usually created 
with the Project Wizard tool of the Workbench (see ch Errore. 
L'origine riferimento non è stata trovata. for more information) 
and stored in the user data path folder. Once created, a project 
could be edited with any text editor. Please check the example 
below: 
 
 

;Project generated by "FlashRunner 2.0 Workbench 2.02" 

 

 

;DEVICE: ATXMEGA32E5 

;DRIVER: ATXMEGA 01.07 

 

!ENGINEMASK 0x0000FFFF 

#LOADDRIVER libatxmega.so ATMEL ATXMEGA ATXMEGA32E5 

#TCSETDEV VDDMIN 1600 

#TCSETDEV VDDMAX 3600 

#TCSETDEV FOSCMIN 0 

#TCSETDEV FOSCMAX 0 

#TCSETDEV FPLLMIN 0 

#TCSETDEV FPLLMAX 0 

#TCSETDEV MCUID 0x2918 

#TCSETDEV IDCODE 0x00000000 

#TCSETDEV IDCODE_MSK 0x0FFFFFFF 

#TCSETDEV CORE ATXMEGA 

#TCSETDEV MEMMAP 0 F 0 0x00800000 0x00808FFF 0x00000080 

0x00000080 0 0 0x0 0x0 0xFF 0x0 0 

#TCSETDEV MEMMAP 1 E 0 0x008C0000 0x008C03FF 0x00000020 

0x00000020 0 0 0x0 0x0 0xFF 0x0 0 

#TCSETDEV MEMMAP 2 U 0 0x008E0400 0x008E040F 0x00000001 

0x00000001 0 0 0x0 0x0 0xFF 0x0 0 

#TCSETDEV MEMMAP 3 C 0 0x008E0200 0x008E020F 0x00000001 

0x00000001 0 0 0x0 0x0 0xFF 0x0 0 

#TCSETDEV MEMMAP 4 L 0 0x008F0020 0x008F002F 0x00000001 



 

168 

0x00000001 0 0 0x0 0x0 0xFF 0x0 0 

!CRC 0x25CDA0E6 

#TCSETPAR PROTCLK 15000000 

#TCSETPAR PWDOWN 100 

#TCSETPAR PWUP 100 

#TCSETPAR RSTDOWN 100 

#TCSETPAR RSTDRV OPENDRAIN 

#TCSETPAR RSTUP 100 

#TCSETPAR VPROG0 3300 

#TCSETPAR CMODE PDI 

#TPSETSRC vipcb6_test.frb 

#DYNMEMSET 0x8E0400 7 0x00 0xFF 0xFF 0xFF 0xFF 0xFF 0x00 

#TPSTART 

#TPCMD CONNECT 

#TPCMD MASSERASE C 

#TPCMD BLANKCHECK F 

#TPCMD PROGRAM F 

#TPCMD VERIFY F R 

#TPCMD BLANKCHECK E 

#TPCMD PROGRAM E 

#TPCMD VERIFY E R 

#TPCMD PROGRAM U 

#TPCMD PROGRAM L 

#TPCMD DISCONNECT 

#TPEND 

 

 
The example above shows a simple project example that 
configures a channel subset for a target device. There could be 
more than one target device configured inside the same project, 
requiring another command block (starting with !ENGINEMASK and 

finishing with #TPEND) which defines the new target device 

settings.  
The channel subset involved for a specific target device is 
defined by !ENGINEMASK command: the following number defines 

bitwise in base 2 the channels involved. 

Example: 

 Send a command to channels: 8, 5, 3, 2, 1. 

 Engine Mask: 0b10010111 = 151 

 



 

169 

The subsequent section defines the target device (through 
#LOADDRIVER) and all the specific device information (through the 

#TCSETDEV command). This section is closed by !CRC command: 

this number prevents altering the information above which are 
sensitive data and would compromise the programming routine. 

The next section is composed mainly of #TCSETPAR and 

#TPSETSRC commands, which defines a set of user-defined 

parameters (the result of Project Wizard settings). These 
commands are editable and the order doesn't matter.  
Common TCSETPARs are here listed: 

• CMODE: name of the communication protocol. 

• PROTCLK: frequency of the communication. 

• PWDOWN: ms used to power down the board. 

• PWUP: ms used to power up the board. 

• RSTDOWN: us waited to reset-down the board. 

• RSTUP: us waited to reset-up the board. 

• RSTDRV: reset drive management. PUSHPULL or 
OPENDRAIN. 

• VRPOG0: voltage level of the VPROG0, it is also the 
logical voltage of DIO signals. 

• VPROG1: voltage level of the VPROG1. 

• FOSC: frequency of the external oscillator of the device. 

• FPLL: frequency of the PLL of the device. 

Each driver can use custom TCSETPAR needed for a specific 
device type. Their description can be found in the Wiki of the 
driver. 

The last section is enclosed between #TPSTART and #TPEND 

commands and defines the operations executed on the target 
device. These commands are editable, the order does matter and 
we suggest not changing it once Project Wizard compiles the file. 



 

170 

Commands related to single memory types have a double 
syntax: 

• #TPCMD PROGRAM F: programs automatically the memory 

type ‘F’ in the area defined by the loaded FRB file. 

• #TPCMD PROGRAM F 0x0 0x100: programs memory type ‘F’ 

in the area defined by the command parameters above. 
Target start address is 0x0, length 0x100. If loaded FRB 
doesn't contain any data in this area, the target device is 
not going to be programmed. 

Usually, the double syntax is available for BLANKCHECK, PROGRAM, 

VERIFY, READ and DUMP commands. 

 

 
  

 

i 
 

Note: 
The maximum length of commands, parameters, 
project names, driver names and frb names is 40 
characters. All parts are case-sensitive. 



 

171 

5.1 Execution and Termination 

FlashRunner 2.0 execution can be controlled via Host mode 
(USB or Ethernet connection) or in Standalone mode (Control 
Connector). 
Project execution ends either after FlashRunner 2.0 has 
executed the last project command or immediately after the first 
failing project command. 
 

 Standalone project execution 

FlashRunner 2.0 has a control connector (for hardware details 
please refer to FlashRunner 2.0 User's Manual). 

SEL[4..0] is a group of control lines that determine in binary logic 
a decimal number from 0 to 31. This number represents the 
project that is going to be executed, named as: project0.prj ... 
project31.prj. 

Referring to the below diagram which illustrates the typical 
temporal relations between the various FlashRunner 2.0 control 
lines, the event that triggers script execution is the START control 
line becoming active (LOW value) while the BUSY line is not 
active (HIGH value). This line can be easily driven by an external 
control logic. 
When FlashRunner 2.0 begins executing a project, the BUSY 
LED turns on and the line goes LOW. 
When the BUSY line goes HIGH the LED turns off and it is 
possible to read the PASS/FAIL line. A HIGH value means 
failure, a LOW value means success. 



 

172 

 
 

  Remote projects execution 

A project can be manually executed in host mode.  RUN command 

(see ch 4.2) executes a specified project. 
  

 

START 

SEL lines are latched 

Corresponding script is executed 

Result LEDs are turned off Either “PASS” or “FAIL” LED is turned on 

SEL[4..0] 

BUSY 

PASS/FAIL 

Script execution 
terminated 



 

173 

5.2 Project-Specific Directives 

FlashRunner commands contained in a project are executed 
sequentially, exactly as they would be executed in Host mode. 
However, projects contain additional directives (not available in 
Host mode) indicated with “!” prefix which controls how projects 
are executed. The following table lists these directives: 

Directive Syntax Description 

ENGINEMASK Defines bitwise which channels are involved for the 
following command section 

CRC Calculate CRC of the preceding commands to avoid 
specific target device data altering. 

5.3 Logging 

On FlashRunner, project command execution is logged. You can 
check at the runtime log file (see ch 6) or download the log file 
just by clicking the quick button on the top toolbar. 

5.4 Comments 

A project line may contain a comment. A comment line starts with 
the “;” character, FlashRunner will completely ignore that line and 
so can be used as a comment. 



 

174 

5.5 Conditional scripting 

With the aim of raising the flexibility and the customization of 
projects, FlashRunner implements low level commands able to 
control the flow of the script’s commands.  
The syntax used gets back to classical programming languages 
and shall be immediately clear to all the users who are familiars 
with them, because it reproduces if, then, else statement. In fact, 
in “C” programming language control flow syntax is as follows: 
 
if (expression)  

statement1  
else  

statement2  
 

where the else part is optional. The expression is evaluated; if it 
is true (that is if the expression has a non-zero value), statement1 

is executed. If it is false (the expression is zero) and if there is an 
else part, statement2 is executed instead. 
In FlashRunner the same goal can be achieved using the syntax 
below inside any project file: 
 
#IFERR expression 
#THEN statement1 

 
in which expression is TRUE when the command returns 
“>“ character (meaning that command has been executed 
successfully), or it is FALSE if the command returns an error 
(with correspondent error code).  
 
Notes: 
1. Please note that syntax above can be used only inside a 

script file and it’s not recognized on the command line 
2. Control flows can’t be nested 
3. Only one expression can be evaluated 



 

175 

4. Multiple statements can be executed for each case 
5. If expression evaluation returns false, the error stack will be 

traced in the log file. Anyway, if all the subsequent 
commands will return “>”, the project will not return with an 
execution error. 

6. A syntax error will be returned in case the script has two 
consecutive IFERR, or if there is an IFERR without a THEN 
or vice versa. 

 
Example: 
 
The following example is an extract from a script where the 
MASSERASE operation is carried out only if blank check 
operation returns an error, that is the device to be programmed 
is not blank.  
 
#IFERR TPCMD BLANKCHECK F 
#THEN TPCMD MASSERASE F 

 
With this approach it is often possible to reduce project execution 
time. This technique applies mostly to conditioning target device 
memory-erasing only if BLANKCHECK fails. 
 
It is also possible to include a second statement to perform the 
BLANKCHECK operation one more time, just in case the first one 
failed. In this way it’s possible to be sure that MASSERASE 
worked, while two operations are skipped if the first 
BLANKCHECK doesn’t fail. 
 
#IFERR TPCMD BLANKCHECK F 
#THEN TPCMD MASSERASE F 
#THEN TPCMD BLANKCHECK F 

 
Please refer to your driver-specific commands before 
implementing conditional scripting it in your projects. 



 

176 

6 Serial Numbering 

6.1 Introduction 

Thanks to its built-in dynamic memory, FlashRunner provides 
you with the possibility of serial numbering during programming 
operations. During each programming cycle, a host system 
generates a serial number and transfers it to FlashRunner’s 
dynamic memory. The content of the dynamic memory is then 
programmed into the target device. 

6.2 Command syntax 

The following example illustrates how serial numbering can be 
performed. 
Let’s assume that the serial number is composed of 4 bytes, must 
be programmed into target device connected to channel 1, flash 
starting from address 0x400, and that serial number to be 
programmed is 0x55 0xAA 0x22 0xFE (0x55 at address 0x400, 
0xAA at address 0x401 … and so on). 
Host system transfers this serial number to FlashRunner’s 
dynamic memory with the following command: 
 
#1*DYNMEMSET 0x400 4 0x55 0xAA 0x22 0xFE 

 
or with the following command: 
 
#1*DYNMEMSET2 0x400 4 55AA22FE 

 
And FlashRunner will apply this “patch” over FRB data. You can 
define more than one patch, virtually without limits (physical limit 



 

177 

is FlashRunner 1 GB RAM), but defined data is 16 bytes for 
DYNMEMSET, and a total of 512 bytes for the entire DYNMEMSET2 

command.  
You can overwrite data which have been previously set in the 
same addresses, FlashRunner will automatically remove what 
has been previously set and write the new data. Anyway, we 
suggest using the command DYNMEMCLEAR to clear all data 

before setting new data. 

6.3 Example 

... 

#TCSETPAR RSTUP 100 

#TCSETPAR VPROG0 3300 

#TCSETPAR CMODE JTAG 

#TPSETSRC APH_U27_varD.frb 

#DYNMEMSET 0xA0604020 4 0x39 0x30 0x41 0x46 

#DYNMEMSET 0xA06040A0 3 0x44 0x48 0x31 

#TPSTART 

#TPCMD CONNECT 

#TPCMD MASSERASE D 

#TPCMD BLANKCHECK D 

#TPCMD PROGRAM D 

#TPCMD VERIFY D R 

#TPCMD MASSERASE F 

#TPCMD BLANKCHECK F 

#TPCMD PROGRAM F 

#TPCMD VERIFY F R 

#TPCMD DISCONNECT 

#TPEND 

 

APH_U27_varD.frb must contains defined region at start address 
0xA0604020 for 10 bytes size and 0xA06040A0 for 8 bytes size. 
If your source file doesn't cover this region please use FRB 
Manager (see ch 3.16) to define it (use Advanced FRB setup 
feature → Add → Variable data option). 



 

178 

Once defined, this data will be programmed overwriting FRB 
original data, together with PROGRAM command in a single step. 

Typically, DYNMEMSET command is not contained inside a project 

but it's sent manually from connected PC host; after that PC host 
can run the project with RUN command: FlashRunner will 

remember DYNAMIC data table until DYNMEMCLEAR command 

execution or FlashRunner power-on reset. 
 

 

i 
 

Note: until #DYNMEMCLEAR command, dynamic 

data will be maintained during the project execution 
loop 

6.4 Word Addressing 

Most devices don’t need this kind of commands, in fact, this 
section is reserved for the devices which have a word addressed 
memory. 
If you intend to use dynamic memory with them, you shouldn’t 
use the standard commands described in the previous sections 
because they use byte addressing. You must use the following 
commands which are specifically developed for this case ( as 
before, 0x55 at address 0x200, 0xAA at address 0x401 … and 
so on): 
 
#1*DYNMEMSETW 0x200 2 0xAA55 0xFE22 

 
or with the following command: 
 
#1*DYNMEMSETW2 0x200 2 55AA22FE 

 



 

179 

These commands are extremely similar to the standard ones, just 
pay attention to the length which is in words and to the 
endianness. 

6.5 Using dynamic memory without FRB 

Sometimes it is useful to have a very flexible solution, without 
using a dummy FRB just to define the addresses of memory 
where to set dynamic data. That’s why you can directly set the 
dynamic memory as the source instead of an FRB file: 
 
#TPSETSRC DYNMEM 

 
Below you can see an example where we program and verify 
only the 12 bytes defined into the dynamic memory, without 
needing to generate any additional FRB file.  
 
#TPSETSRC DYNMEM 

#DYNMEMSET2 0x400120 12 E03912343484568078809A73 

#TPSTART 

#TPCMD CONNECT 

#TPCMD PROGRAM F 

#TPCMD VERIFY F R 

#TPCMD DISCONNECT 

#TPEND 



 

180 

7 Data Protection System 

7.1 User management 

User management has two modes: ADMIN and GUEST mode. 
This mechanism allows administrators to prepare FlashRunner 
unit with all the required settings and then drop-down privileges 
and allow GUESTs to limit functionalities preventing settings 
modifications, file download or upload, and so on. 
 
By default, FlashRunner comes with ADMIN mode activated 
only. If you want to enable GUEST mode, you need first to create 
an ADMIN password (maximum 40 characters). You can do this 
by using SETADMINPWD command described in chapter 4.4 or 

using the Cyber Security tab of the Workbench.  
#LOGIN ADMIN 

#SETADMINPWD <new_password> 

Once done, please remember that after reboot FlashRunner will 
always start in GUEST mode. If you want to disable the user 
management, you just need to execute SETADMINPWD with no 

password value or use the Cyber Security tab of the Workbench. 
This way only ADMIN will be available. You can see in which 
state FlashRunner is by using WHOAMI command. You can easily 

switch between users by using LOGIN / LOGOUT commands. 

 
 

i 
 

Warning: It is important for customers to ensure that 
they do not misplace or forget the admin password. 
Anyway, in the unfortunate event this occurs, the 
customer will need to send the programmer to SMH 
Technologies for a factory reset. 



 

181 

 

i 
 

Note: SMH Technologies suggests using always the 
latest version of OS when Cyber Security features 
are needed. 

 
  Command permission level 

When user management is enabled, each command has a 
default permission level which, for some of them, can be 
changed. This information is described in chapter 4.4 for each 
command.  
 
The possible levels permission levels are: 

1. GUEST: this command can be executed by all the users. 
2. ADMIN: this command can be executed only by the 

admin. 
3. PROTECTED: this command can be executed only if the 

admin user logged in within 3 seconds. 
4. NONE: this command can’t be executed by any user. 

These commands, for security reasons, are disabled by 
default also when the user management is not activated. 
To use such commands the user has to activate the user 
management, log in as ADMIN and change the command 
level within 3 seconds of the login. 

To change command permission, if possible, the user can send 
the SETCMDLEVEL command or use the Workbench. 

GETCMDLEVEL is used to get the permission level of a command. 

 
 

i 
 

Note: SMH Technologies strongly suggests using 
the Workbench GUI. Moreover, some permissions, 
like the ability to send/receive files, can be changed 
only via Workbench. 



 

182 

 
 Non-standard command permission level 

The permission level typically is linked to a specific command, 
but there are some special permission settings:  

• TPMCD_READ: execution of READ command. 
The default value for this permission is GUEST. 
 

• TPCMD_DUMP: execution of DUMP command. 
The default value for this permission is GUEST. 
 

• CMDBYCMD_EXEC: execution of scriptable commands 
when sent outside a project. 
The default value for this permission is GUEST. 
 

• MULTIPLE_LAN_CONN: blocks more than one LAN 
connection to the port 1234, which is the port used to send 
commands and exchange data with the FlashRunner. The 
real-time log port 1235 is always available, so if the user 
has sensitive data on the log, he must hide them using 
SETLOGLEVEL or using encrypted dynamic data. 
Moreover, the USB port is always available as well. 
When it is set to NONE, multiple LAN connections are 
always allowed; when it is set to PROTECTED it blocks 
more than one LAN connection only during the 
PROTECTED session; when it is set to ADMIN it blocks 
more than one LAN connection only for ADMIN user; 
when it is set to GUEST it blocks more than one LAN 
connection for all users. 
If the FlashRunner is in GUEST mode with the LAN 
connection permission set to PROTECTED, and multiple 
LAN connections are active, changing to ADMIN mode will 
fail. 
The default value for this permission is NONE.  



 

183 

 

• SEND_OS_UPDATE: allows sending OS updates to the 
programmer. The default value for this permission is 
PROTECTED. SMH Technologies suggests setting this to 
NONE for maximum security. In fact, this will prevent 
users from installing any old OS that is not managing 
password and permissions.  

 

  Flashing cycle limitation 

The ADMIN can set a maximum number of flashing cycles for the 
GUEST user. This operation can be done on the Cyber Security 
tab of the Workbench, or using the commands SETCOUNTER / 
GETCOUNTER. 

 

For each programming success, the counter is decreased and 
when it arrives at 0 the GUEST can’t run any project anymore. 
 

  Admin session timeout 

It is possible to set a session timeout for the ADMIN user. The 
countdown starts when the login is executed. When the counter 
arrives at zero, at the next command received the ADMIN is 
logged out and the FlashRunner enters in GUEST mode.  
 
The SETADMINTIMEOUT can be used to set the counter value in 

seconds. The UNSETADMINTIMEOUT to remove the counter. The 

GETADMINTIMEOUT to get the timeout value in seconds. 

  



 

184 

7.2 FRB encryption 

Each FRB could be encrypted using the FlashRunner 
Workbench tool (See ch 3.10).  
This feature will produce a new file, with .frs extension, which is 
the encrypted version of the original file. New .frs file can't be 
encrypted anymore outside of the specified FlashRunner. 
To use it, please, upload .frs to FlashRunner (using Advanced 
File Manager, see ch 3.11) and change #TPSETSRC filename 

extension on the related project, finally upload the project to 
FlashRunner. 
 
When using the highest level of encryption, you could face the 
need to transfer public keys from one computer to another one. 
In this case, you have to connect the FlashRunner to the first 
computer and go to the “Cyber Security” tab on the “Firmware 
Encryption” section. From there you can press the button “Get 
Public Key” to obtain the public key of your FlashRunner, then 
press the button “Export public keys” to generate a “pubKeys.frk” 
file containing all the public keys memorized by that computer. 
On the second computer, while following the procedure to 
encrypt the firmware, you will be asked to choose the SN of the 
FlashRunner and, from that window, you can click the “Import 
public keys” button to import the “pubKeys.frk” file. 
 
See also: 

• #GENCRYPTOKEY 

• #GETPUBKEY 

• #SETFRSPWD  



 

185 

7.3 Managing big FRS on FlashRunner High-Speed 

When encrypting big firmware files (such as firmware for an 
eMMC memory) and employing FlashRunner High-Speed, a 
decrypted version of the file is stored in the High-Speed Memory 
to guarantee the best performance. This memory is a non-volatile 
memory soldered in the programmer and the user cannot read 
its content using standard commands. The only possible 
vulnerability would be to steal the programmer and access the 
memory in a non-conventional way. To prevent this remote 
possibility, we recommend executing the HSMEMFORMAT 
command to clean the High-Speed Memory after completing the 
production batch. 
 
See also: 

• HSMEMFORMAT 

7.4 Dynamic data encryption 

Dynamic data (such as passwords, serial numbers and other 
keys that are different for each target) can be encrypted as well 
using the same method used to encrypt FRB. 
After encrypting these data, they can only be decrypted by the 
specific FlashRunner selected while encrypting them. 
 
The data can be encrypted using the DLLs. See chapter 8 for 
more details. 
 
See also: 

• #DYNMEMSETHEADER 

• #DYNMEMCLEARHEADER  



 

186 

7.5 OS Certification 

Starting from version 3.19 the procedure of installation of the 
OS changes and to downgrade (or upgrade) you have to use 
the new certified versions. 
 
The previous certificated versions of the OS (starting from 3.17 
included) can be downloaded from our website in the OS 
changelog page that can be found in the Wiki section. 
 
For older versions than OS 3.17, please contact directly our 
Support Team (T:+39 0434 421111 or support@smh-tech.com). 
 

tel:+390434421111
mailto:support@smh-tech.com


 

187 

8 FlashRunner Interface 
Library 

8.1 Overview 

This chapter deals with interfacing FlashRunner with PC 
applications written by the user. This chapter assumes you have 
already read the previous sections of this manual and got 
acquainted with the instrument. 

8.2 FlashRunner Interface Library Overview 

FlashRunner Interface Library is a DLL that includes all of the 
functions that allow you to set up a communication channel with 
the instrument and send commands to FlashRunner. 
Dynamic-link libraries (DLL) are modules that contain functions 
and data. A DLL is loaded at run time by its calling modules (.exe 
or .dll). When a DLL is loaded, it is mapped into the address 
space of the calling process. 
FlashRunner Interface Library contains Visual C++ written 
routines (version 1.0.x.x) that can be used to interface the 
instrument from within, for example, a Microsoft Visual C++ or 
Visual Basic application, as well as any other programming 
language that supports the DLL mechanism.  
It also contains a Visual C# written COM Interop class library 
(version 2.0.x.x) that can be used to interface the instrument not 
only with the above-mentioned IDEs but also with Visual C#, 
Visual C++ CLI applications and graphical programming 
environments such as, for example, LabVIEW and TestStand.  



 

188 

For details on how to call DLL functions from within your 
application, please refer to your programming language’s 
documentation. 

8.3 Installation 

Before to start working with the FlashRunner Interface Library, 
you must set up your system with all the required files and 
drivers. The files to be installed, into your application’s directory, 
are: 
 
For version 1.0: 
 
▪ The “FR_COMM.dll” (this file must also be redistributed with 

your application); 
▪ For Visual C++ only: the “FR_COMM.lib” and 

“FR_COMM.h” files (you must include these files in your 
project); 

▪ For Visual Basic only: the “FR_COMM.bas” file (you must 
include this file in your project). 

 
For version 2.0: 
 
▪ “FR_COMM_x86.dll” or “FR_COMM_x64.dll” (these files 

must also be redistributed with your application); 
▪ “FR_COMM_x86.tlb or “FR_COMM_x64.tlb” (these files 

become necessary only for plain C++ applications requiring 
COM Interop functionalities. These files must also be 
redistributed with your application); 

▪ .NET Runtime Library 3.5 (or higher) is requested for this 
new version of Interface Library to work. 

 



 

189 

These files are automatically installed by the System Software 
setup (in your installation path). 

8.4 Interface Library Reference (version 1.0) 

 Using the Interface Library Functions 

When you control FlashRunner within your own application, you 
will typically follow the steps indicated below: 
 

• Open a communication channel with the instrument. 
The FR_OpenCommunication() function must be called prior 

to any other Interface Library function. 

• Send commands to the instrument and read answers 
back. 
Use the FR_SendCommand() and FR_GetAnswer() functions 

to send a command and receive the answer sent back by the 
instrument, respectively. 
As the very first command, the user should always call a 
SPING command to check the communication and, 
optionally, also the SGETSN command to check that the 
connection has been established with the correct 
FlashRunner. 

• Transfer files to/from FlashRunner. 
Two dedicated functions, FR_SendFile() and 

FR_GetFile(), allow you to transfer a file from the PC to 

FlashRunner and vice-versa, respectively. 
The FR_SendFile() function is typically used to upload a 

binary file to the instrument, while the FR_GetFile() function 

is typically used to download a log file to the PC. 

• Close the communication channel with the instrument. 
This is done by the FR_CloseCommunication() function. 

 



 

190 

 Return Values of the Interface Library Functions 

Most of the FlashRunner Interface Library functions return an 
unsigned long value which indicates whether the function was 

successfully executed (return value = 0) or not (return value 

other than 0). In the latter case it is possible to get extended error 
information by calling the function FR_GetLastErrorMessage(). 

 
 Unicode Functions 

Every Interface Library function comes in two versions, an ASCII 
version and a Unicode version. ASCII function names end with 
A, while Unicode function names end with W. For example, the 
FR_SendCommand() function is available as an ASCII version as: 

 
FR_COMM_ERR WINAPI FR_SendCommandA (FR_COMM_HANDLE 

handle, const char *command);  

 
and as a Unicode version as: 
 
FR_COMM_ERR WINAPI FR_SendCommandW (FR_COMM_HANDLE 

handle, const wchar_t *command); 

  



 

191 

 
 FR_OpenCommunication 

 

Include file: 
#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_HANDLE WINAPI FR_OpenCommunicationA 

(const char *port, 

const char *settings); 
 FR_COMM_HANDLE WINAPI FR_OpenCommunicationW 

(const wchar_t *port, 

const wchar_t *settings); 
 
Parameters: 

port: communication port. Must be “LAN” for Ethernet 

communication “COMx” for USB communication, 
where “x” is the number of the used port. 

settings: IP address and port for Ethernet communication 

(e.g. “192.168.1.100:1234”), baudrate for 

USB (e.g. “115200”) 
Return value: 

>0: handle of the communication. 
NULL: an error occurred. Call the function 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Creates a communication link with the instrument. Returns a 
communication handle that must be used by successive FlashRunner 
Interface Library function calls. 

 
Note: 

After opening communication, the user should always call a SPING 
command to check the communication and, optionally, also the 
SGETSN command to check that the connection has been established 
with the correct FlashRunner.  



 

192 

 FR_CloseCommunication 

 

Include file: 
#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_ERR WINAPI FR_CloseCommunicationA 

(FR_COMM_HANDLE handle); 
 FR_COMM_ERR WINAPI FR_CloseCommunicationW 

(FR_COMM_HANDLE handle); 
 
Parameters: 

handle: handle of communication. This is the value returned 

by the FR_OpenCommunication() function. 
Return value: 

0: the function was successful. 
Other than 0: an error occurred. Call the 

FR_GetLastErrorMessage() function to get an 

extended error information. 
 
Description: 

Closes the communication link with the instrument. 



 

193 

 FR_GetAnswer 

 

Include file: 
#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_ERR WINAPI FR_GetAnswerA 

(FR_COMM_HANDLE handle, 

char *answer, 

unsigned long maxlen, 

unsigned long timeout_ms); 
 FR_COMM_ERR WINAPI FR_GetAnswerW 

(FR_COMM_HANDLE handle, 

wchar_t *answer, 

unsigned long maxlen, 

unsigned long timeout_ms); 
 
Parameters: 

handle: handle of communication. This is the value returned 

by the FR_OpenCommunication() function. 
answer: the buffer that will receive the answer (\0 

terminated) of the instrument. 
maxlen: maximum number of characters to receive (must be 

less than or equal to the answer buffer length). 
timeout_ms: timeout, in milliseconds, after which the function 

returns even if a complete answer has not been 
received. 

 
Return value: 

0: the function was successful. 
Other than 0: an error occurred. Call the function 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Receives the answer sent by FlashRunner to the PC, in response to the 
FR_SendCommand() function. A FR_GetAnswer() function should 

always follow a FR_SendCommand() function. 



 

194 

 FR_GetFile 

 
Include file: 

#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_ERR WINAPI FR_GetFileA 

(FR_COMM_HANDLE handle, 

const char *protocol, 

const char *src_filename, 

const char *dst_path,  

const char *filetype, 

FR_FileTransferProgressProc 

progress); 
 FR_COMM_ERR WINAPI FR_GetFileW 

(FR_COMM_HANDLE handle, 

const wchar_t *protocol, 

const wchar_t *src_filename, 

const wchar_t *dst_path, 

const wchar_t *filetype, 

FR_FileTransferProgressProc 

progress); 
 
Parameters: 

handle: handle of the communication. This is the value 

returned by the FR_OpenCommunication() 

function. 
protocol: transfer protocol. Must be “YMODEM”. 
src_filename: name of the file to be retrieved from FlashRunner, 

e.g. "test.prj. 
dst_path: local path where to save the file. 
filetype: could be FRB|PRJ|LIC|LOG|LIB. 
progress: address of a callback function which will receive the 

progress status of the file transfer operation. If not 
used, set this parameter to NULL. 

 
Return value: 

0: the function was successful. 



 

195 

Other than 0: an error occurred. Call the function 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Retrieves a file from FlashRunner and stores it in a specified local path. 
 



 

196 

 FR_GetLastErrorMessage 

 

Include file: 
#include “FR_COMM.h” 

 
Function prototypes: 

 void WINAPI FR_GetLastErrorMessageA 

(char *error_msg, 

unsigned long string_len); 
 void WINAPI FR_GetLastErrorMessageW 

(wchar_t *error_msg, 

unsigned long string_len); 
 
Parameters: 

error_msg: buffer that will receive the error message. 
string_len: length of the buffer. 
 

Return value: 
none. 

 
Description: 

Most of the FlashRunner Interface Library functions return an 
unsigned long value which indicates whether the function was 

successfully executed (return value = 0) or not (return value other than 

0). In the latter case it is possible to get extended error information by 
calling the function FR_GetLastErrorMessage() function. After the 

function is called, the error_msg buffer is cleaned 



 

197 

 FR_SendCommand 

 

Include file: 
#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_ERR WINAPI FR_SendCommandA 

(FR_COMM_HANDLE handle, 

const char *command); 
 FR_COMM_ERR WINAPI FR_SendCommandW 

(FR_COMM_HANDLE handle, 

const wchar_t *command); 
 
Parameters: 

handle: handle of the communication. This is the value 

returned by the FR_OpenCommunication() 

function. 
command: string containing the FlashRunner command. 
 

Return value: 
0: the function was successful. 
Other than 0: an error occurred. Call the function 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Sends a command to FlashRunner. To get the command answer, use 
the FR_GetAnswer() function. 

 



 

198 

 FR_SendFile 

 
Include file: 

#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_ERR WINAPI FR_SendFileA 

(FR_COMM_HANDLE handle, 

const char *protocol, 

const char *src_filename, 

const char *dst_path, 

FR_FileTransferProgressProc progress); 
 FR_COMM_ERR WINAPI FR_SendFileW 

(FR_COMM_HANDLE handle, 

const wchar_t *protocol, 

const wchar_t *src_filename, 

const wchar_t *dst_path, 

FR_FileTransferProgressProc progress); 

 
Parameters: 

handle: handle of the communication. This is the value 

returned by the FR_OpenCommunication() 

function. 
protocol: transfer protocol. Must be “YMODEM”. 
src_filename: name of the file (inclusive of the path) to be sent to 

FlashRunner, 
e.g. "C:\\MYBINARIES\\FLASH1.FRB". 

dst_path: could be FRB|PRJ|LIC|LOG|LIB. 
progress: address of a callback function which will receive the 

progress status of the file transfer operation. If not 
used, set this parameter to NULL. 

Return value: 
0: the function was successful.  
Other than 0: an error occurred. Call the function 

FR_GetLastErrorMessage() to get an 

extended error information. 
Description: 

Sends a file from the PC to a specified path of FlashRunner. 
 



 

199 

 FR_GetPublicKey 

 

Include file: 
#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_ERR WINAPI FR_GetPublicKey 

(FR_COMM_HANDLE handle); 
 
Parameters: 

handle: handle of the communication. This is the value 

returned by the FR_OpenCommunication() 

function. 
Return value: 

0: the function was successful. 
Other than 0: an error occurred. Call the function 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Get the public key, for internal use of the DLL, for the encryption of the 
dynamic data. This is like an initialization for the successive 
FR_EncryptData() operations. 
 



 

200 

 FR_EncryptData 

 

Include file: 
#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_ERR WINAPI FR_EncryptData 

                   (FR_COMM_HANDLE handle, 

                   const unsigned char* data_to_encrypt, 

                   unsigned int len_data, 

                   unsigned char* header, 

                   unsigned char* data_encrypted); 
 
Parameters: 

handle: handle of the communication. This is the value 

returned by the FR_OpenCommunication() 

function. 
data_to_encrypt: buffer containing the data to encrypt. 

len_data: length of the data to encrypt. 

header: buffer containing the encrypted header in Hex 

format. The len is 384 bytes. 
data_encrypted: buffer with the data encrypted in Hex format. The 

len is len_data aligned to 16.  

 
Return value: 

0: the function was successful. 
Other than 0: an error occurred. Call the function 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Receive as input a buffer of data (data_to_encrypt). Returns the 

header, in Hex format, to be sent with the #DYNMEMSETHEADER 

command and the data encrypted, in Hex format, to be used with a 
#DYNMEMSET command. Both the header and data_encrypted 

buffers have to be convereted to ASCII format. The 
FR_HexToAsciiStream() utilty can be used for this task. 



 

201 

 FR_HexToAsciiStream 

 

Include file: 
#include “FR_COMM.h” 

 
Function prototypes: 

 FR_COMM_ERR WINAPI FR_HexToAsciiStream 

(const unsigned char* data_hex, 

unsigned int len_data, 

   char* data_ascii); 
 
Parameters: 

data_hex: buffer containing the data in Hex format to be 

converted to ASCII. 
len_data: the length of the data in input. 

data_ascii: buffer containing the data in ASCII format 
 

Return value: 
0: the function was successful. 
Other than 0: an error occurred. Call the function 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Converts a buffer of Hex values in the corresponding Ascii string. The 
output (data_ascii) has a dimension double of the original buffer 

(data_hex). 
 
  



 

202 

8.5 Interface Library Reference (version 2.0) 

 Using the C# Interface Library Class 

When you control FlashRunner within your own application, you 
will typically follow the steps indicated below: 
 

• Open a communication channel with the instrument. 
The FR_OpenCommunication() method must be called prior 

to any other Interface Library method. 
 

• Send commands to the instrument and read answers 
back. 
Use the FR_SendCommand() and FR_GetAnswer() methods 

to send a command and receive the answer sent back by the 
instrument, respectively. 
As the very first command, the user should always call a 
SPING command to check the communication and, 
optionally, also the SGETSN command to check that the 
connection has been established with the correct 
FlashRunner. 

 

• Transfer files to/from FlashRunner. 
Two dedicated methods, FR_SendFile() and FR_GetFile(), 

allow you to transfer a file from the PC to FlashRunner and 
vice-versa, respectively. 
The FR_SendFile() method is typically used to upload a 

binary file to the instrument, while the FR_GetFile() method 

is typically used to download a log file to the PC. 
 

• Close the communication channel with the instrument. 
This is done by the FR_CloseCommunication() method. 

 



 

203 

• Open a communication channel with the instrument for 
real-time logging 
This is done by the FR_GetLogger() function and logger read 

method. 
 

• Close the communication channel with the instru0ment 
for real-time logging 
This is done by the FR_DisposeLogger() method. 

 
 Return Values of the Interface Library Methods 

Most of FlashRunner Interface Library methods return an 
FR_COMM_ERRORS enumerative value which indicates whether the 

function was successfully executed (return value = RET_OK) or 

not (return value other than RET_OK). In the latter case, it is 

possible to get extended error information by calling the 
FR_GetLastErrorMessage()method. 

  



 

204 

 
Below a list of actual FR_COMM_ERRORS entries: 
 

public enum FR_COMM_ERRORS 

{ 

    RET_OK = 0, 

    RET_ERR_INVALID_HANDLE, 

    RET_ERR_INVALID_PORT, 

    RET_ERR_INVALID_FORMAT, 

    RET_ERR_LOGGER_INVALID_FORMAT, 

    RET_ERR_INVALID_IP, 

    RET_ERR_INVALID_BAUDRATE, 

    RET_ERR_OPEN_CHANNEL, 

    RET_ERR_CLOSE_CHANNEL, 

    RET_ERR_CHANNEL_CLOSED, 

    RET_ERR_SEND_BUFFER, 

    RET_ERR_GET_BUFFER, 

    RET_ERR_RECEIVE_TIMEOUT, 

    RET_ERR_SEND_CHAR, 

    RET_ERR_GET_CHAR, 

    RET_ERR_SEND_COMMAND, 

    RET_ERR_GET_ANSWER, 

    RET_ERR_SEND_FILE, 

    RET_ERR_GET_FILE, 

    RET_ERR_YMODEM_SEND, 

    RET_ERR_YMODEM_GET, 

    RET_ERR_FAST_SEND, 

    RET_ERR_FAST_GET, 

    RET_ERR_FILE_OPEN, 

    RET_ERR_INVALID_DEST_PATH, 

    RET_ERR_INVALID_SOURCE_PATH, 

    RET_ERR_FILE_NOT_FOUND, 

    RET_ERR_EMPTY_FILE, 

    RET_ERR_INVALID_COMMAND, 

    RET_ERR_UNKNOWN, 

    RET_ERR_INVALID_LOGGER, 

} 



 

205 

 Method Reference for FR 2.0 

Before calling the methods it is necessary to instantiate a 
ComManager class object. After that it will be possible to use its 
methods whose descriptions follow. 
 

 FR_OpenCommunication 

Signature: 

  FR_COMM_ERRORS FR_OpenCommunication 
  (out object handle, string port, string settings); 

 
Parameters: 

handle handle of the communication. 
port: communication port. Must be “LAN” for Ethernet 

communication “COMx” for USB communication, 
where “x” is the number of the used port. 

settings: IP address and port for Ethernet communication 

(e.g. “192.168.1.100:1234”), baudrate for 

USB (e.g. “115200”) 
Return value: 

== RET_OK:  the method call was successful.. 
<> RET_OK: an error occurred.  

  Call the FR_GetLastErrorMessage()   

 method to get extended error information. 
 
Description: 

Creates a communication link with the instrument. If successful it 
returns as output parameter a communication handle that must be used 
by successive FlashRunner Interface Library methods calls. 

 
Note: 

After opening communication, the user should always call a SPING 
command to check the communication and, optionally, also the 
SGETSN command to check that the connection has been established 
with the correct FlashRunner. 
 

  



 

206 

 FR_CloseCommunication 

Signature: 

 FR_COMM_ERRORS FR_CloseCommunication 

 (object handle); 

 
Parameters: 

handle: handle of communication. This is the object 

obtained by the FR_OpenCommunication() 

method. 
 

Return value: 
== RET_OK:  the method call was successful. 
<> RET_OK: an error occurred. 

  Call the FR_GetLastErrorMessage() 

 method to get extended error information. 
 
Description: 

Closes the communication link with the instrument. 
  



 

207 

 FR_SendCommand 

Signature: 

 FR_COMM_ERROR FR_SendCommand 

 (object handle, string  command); 

 

Parameters: 
handle: handle of the communication. This is the object 

obtained by the FR_OpenCommunication() 

method. 
command: string containing the FlashRunner command 

(carriage return and line feed characters are added 
by the DLL). 

 
Return value: 

== RET_OK:  the method call was successful. 
<> RET_OK:  an error occurred. 
 Call the FR_GetLastErrorMessage() method 

to get an extended error information. 
 
Description: 

Sends a command to FlashRunner. 
According to command prefix (see 4.2.1) the number of expected 
answers are evaluated. To get the command answer (a unique string 
with all the involved channels answers), use the FR_GetAnswer() 

function. 
  



 

208 

 FR_GetAnswer 

Signature: 

 FR_COMM_ERRORS FR_GetAnswer 

 (object handle, out string answer, int timeout_ms); 

 
Parameters: 

handle: handle of communication. This is the object 

obtained by the FR_OpenCommunication() 

method. 
answer: the unique string containing all the expected 

answers from the instrument returned as an output 
parameter. 

timeout_ms: timeout, in milliseconds, after which the method 

returns even if a complete answer has not been 
received. 

 
Return value: 

== RET_OK:  the method call was successful. 
<> RET_OK: an error occurred. 

  Call the FR_GetLastErrorMessage()method to 

get an extended error information. 

 
Description: 

Receives the answer (or the answers) sent by FlashRunner to the 
 PC, in response to a FR_SendCommand() method call. 

 Normally a FR_GetAnswer() method should always follow a 

FR_SendCommand()method. 

  



 

209 

 FR_GetLastErrorMessage 

Signature: 

 string FR_GetLastErrorMessage(void); 

 
Parameters: 

None. 

 
Return value: 

a string containing the error message. 
 

Description: 

Most of the FlashRunner Interface Library methods return a 
FR_COMM_ERRORS value which indicates whether the function was 

successfully executed (return value = RET_OK) or not (return value 

other than RET_OK). In the latter case it is possible to get extended error 

information by calling the FR_GetLastErrorMessage()method. 

After the call, the error is cleaned.  
  



 

210 

 FR_GetDllVersion 

Signature: 

 string FR_GetDllVersion(void); 

 
Parameters: 

None. 

 
Return value: 

a string containing the current DLL version (e.g. 2.0.x.x). 

 
Description: 

Gets the current DLL assembly version. 
  



 

211 

 FR_SendFile 

Signature: 

 FR_COMM_ERRORS FR_SendFile 

 (object handle, string src_filename, string

 dst_path, TransferProgressHandler progress) 

 
Parameters: 

handle: handle of the communication. This is the object 

obtained by the FR_OpenCommunication() 

method. 
src_filename: name of the file (inclusive of the path) to be sent to 

FlashRunner, e.g. 
"C:\\MYBINARIES\\FLASH1.FRB". 

dst_path: could be FRB|PRJ|LIC|LOG|LIB. 
progress: a delegate object which encapsulates a callback 

method which will receive the progress status of the 
file transfer operation. If not used, set this parameter 
to NULL. 

 It must conform to the following declaration: 
 delegate void TransferProgressHandler

 (int progress) 

 
Return value: 

== RET_OK: the method call was successful. 
<> RET_OK: an error occurred. Call the method 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Sends a file from the PC to a specified path of FlashRunner. 
  



 

212 

  FR_GetFile 

Signature: 

 FR_COMM_ERRORS FR_GetFile 

 (object handle, string src_filename, string 

 dst_path, string file_type, TransferProgressHandler 

 progress) 

 
Parameters: 

handle: handle of the communication. This is the object 

obtained by the FR_OpenCommunication() 

method. 
src_filename: name of the file to be retrieved from FlashRunner, 

e.g. "test.prj. 
dst_path: local path where to save the file. 
filetype: could be FRB|PRJ|LIC|LOG|LIB. 
progress: a delegate object which encapsulates a callback 

method which will receive the progress status of the 
file transfer operation. If not used, set this parameter 
to NULL. 

 It must conform to the following declaration: 
 delegate void TransferProgressHandler

 (int progress) 

 
Return value: 

== RET_OK: the method call was successful. 

<> RET_OK: an error occurred. Call the method 

FR_GetLastErrorMessage() to get an 

extended error information. 
 
Description: 

Retrieves a file from FlashRunner and stores it in a specified local path. 
  



 

213 

 FR_RunProject 

Signature: 

 FR_COMM_ERRORS FR_RunProject 

 (object handle, string project_name, int[] 

 channels, int timeout_ms, ProjectExecutionHandler 

 callback) 

 

Parameters: 
handle: handle of the communication. This is the object 

obtained by the FR_OpenCommunication() 

method. 
project_name: name of the file to be executed by FlashRunner, e.g. 

"test.prj. 
channels: an array of channels we want the project to be 

executed on (e.g. int [] channels = {1 2 3 14 15 16}). 
timeout_ms: timeout, in milliseconds, after which the method 

returns even if not all the channels have completed 
project execution. 

callback: a delegate object which encapsulates a callback 

method which will receive the channel id and the 
execution result (PASS=true or FAIL=false). If not 
used, set this parameter to NULL. 

 It must conform to the following declaration: 
 delegate void 

ProjectExecutionHandler(int channel, 

bool result); 

 
Return value: 

== RET_OK: the method call was successful. 

<> RET_OK: an error occurred. Call the method 

FR_GetLastErrorMessage() to get an 

extended error information. 
 

Description: 
Executes a project on a given set of FlashRunner’s channels while 
receiving notifications upon individual channel project execution. 



 

214 

 FR_GetLogger 

Signature: 

 FR_COMM_ERRORS FR_GetLogger 

 (string ip_address, out FR_Logger logger) 

 

Parameters: 
ip_address: IP address and port for Ethernet communication 

(e.g. “192.168.1.100:1235”). 

logger: FR_Logger class object used for the real-time 

logging. 
 

Return value: 
== RET_OK: the method call was successful. 

<> RET_OK: an error occurred. Call the method 

FR_GetLastErrorMessage() to get an 

extended error information. 
 

Description: 
Creates a communication link with the instrument for the real-time 
logging. If successful it returns as output parameter a FR_Logger 

object handle that must be used to read from the network stream by 
using its read() methods. 

  



 

215 

 FR_DisposeLogger 

Signature: 

 FR_COMM_ERRORS FR_DisposeLogger(FR_Logger logger) 

 

Parameters: 
logger: a real-time logging handle of communication. This 

is the object obtained by the FR_GetLogger() 

method. 
 

Return value: 
== RET_OK: the method call was successful. 

<> RET_OK: an error occurred. Call the method 

FR_GetLastErrorMessage() to get an 

extended error information. 
 

Description: 
Closes the communication link with the instrument and dispose the 
FR_Logger object. 

 
  



 

216 

 

 FR_GetPublicKey 

Signature: 

 FR_COMM_ERRORS FR_GetPublicKey(object handle) 

 

Parameters: 
handle: handle of the communication. This is the object 

obtained by the FR_OpenCommunication() 

method. 
 

Return value: 
== RET_OK: the method call was successful. 

<> RET_OK: an error occurred. Call the method 

FR_GetLastErrorMessage() to get an 

extended error information. 
 

Description: 
Get the public key, for internal use of the DLL, for the encryption of the 
dynamic data. This is like an initialization for the successive 
FR_EncryptData() operations. 

 

 
 
 
 
  



 

217 

 FR_EncryptData 

Signature: 

 FR_COMM_ERRORS FR_EncryptData(object handle, byte[] 

input, out byte[] output, out byte[] header) 

 

Parameters: 
handle: handle of the communication. This is the object 

obtained by the FR_OpenCommunication() 

method. 
input: array containing the data to encrypt. 
output: array with the data encrypted in Hex format. The len 

is aligned to 16. 
header: array containing the encrypted header in Hex 

format. The len is 384 bytes. 
 

Return value: 
== RET_OK: the method call was successful. 

<> RET_OK: an error occurred. Call the method 

FR_GetLastErrorMessage() to get an 

extended error information. 
 

Description: 
Receive as input an array of data (input). Returns the header, in Hex 

format, to be sent with the #DYNMEMSETHEADER command and the 

data encrypted, in Hex format, to be used with a #DYNMEMSET 

command. Both the header and output arrays have to be convereted 

to ASCII format. The FR_HexToAsciiStream() utilty can be used for 

this task. 
 
 
 
  



 

218 

 FR_HexToAsciiStream 

Signature: 

 string FR_HexToAsciiStream(byte[] input)  

 

Parameters: 
input: array containing the data to convert from Hex to a 

Ascii string. 
 

Return value: 
string: the ascii string of the Hex array in input. The length 

is double of the input. 
 

Description: 
Converts an array of Hex values in the corresponding Ascii string. The 
output (string) has a dimension double of the original array (input). 

 
 
 
 
 
 



 

219 

9 FRB Converter 

This section explains how to use the frbconverter.exe tool 

from a terminal or a batch script. This tool is very powerful and 
allows you to create FRB or FRS (encrypted FRB) with almost 
the same features that you can find from the FlashRunner 
Workbench. It checks the source file addresses overlaps and if it 
fits the device’s memory map in the case a device is selected 
(option -device). 
 
You can refer to the -help to see the full description of the 

features and the parameters that can be used. This is the list of 
some of them: 

• -pathDevices devices_smh_path 

which defines the path for Devices.smh file [Optional]. The 
default is frbconverter.exe directory. 
 

• -fillGaps <YES|NO> 

which enables to fill the gaps of the source file [Optional]. 
 

• -device part_number 

which defines the device part number [Optional]. 
 

• -input input_file_name 

which defines the input file and path. It can be used 
multiple times to use multiple input files. 
 

• -format input_file_format 

which defines the format of the input file. It must be used 
for each input file. Supported formats are:  

o bin – for binary files. 



 

220 

o hex – for Intel Hex files. 

o s19 – for Motorola SREC files. 
 

• -output output_file_name 

which defines the output file name and path. 
 

• -offset offset_value 

which defines an offset and that can be used only for 
binary files. 
 

• -pubKeys public_keys_path 

which defines the file path for pubKeys.frk file where public 
keys to encrypt the file are stored [Optional]. This can be 
enabled only if the output file extension is “.frs”, so only 
encrypted FRB files. 
 

• -secKey secret_key 

which defines secret key to calculate CMAC [Optional]. 
This key must be 16, 24 or 32 bytes long.  
 

• -pwdFRS password 

which defines custom password to encrypt FRB 
[Optional]. 
 

• -emmcOptimize Y 

which enable the “Remove Blank Pages” from suorce file 
during FRB conversion only for eMMC devices (Y/N 
default N) [Optional]. 

 

Some examples of typical usage below: 

• frbconverter.exe -input in.hex -format hex 

-output out.frb 



 

221 

This simple command converts the in.hex file into 

out.frb. 

• frbconverter.exe -input first.s19 -format 

s19 -input second.bin -format bin -output 

out.frb 

This command converts the first.s19 and 

second.bin file into out.frb. 

 

• frbconverter.exe -input input.bin -format 

bin -offset 0x200 -output out.frb 

This command converts the input.bin file with an offset 

of 0x200 into out.frb. 

 
 

It is also possible to set zones with variable data into the FRB to 
be used for dynamic data. This can be done by setting as input 
variable and defining the parameters below: 

• -start_addr address_value 

which defines the start address of the variable data. 
 

• -size size_value 

which defines the size of the variable data. 
 

• -value fill_byte 

which defines the byte to use to fill the variable data. 
 

 
Some examples of typical usage with variable data below: 

• frbconverter.exe -input variable  

-start_addr 0x1000 -size 0x10 -output 

out.frb 

This command defines a variable data from 0x1000 to 

0x100F into out.frb. 



 

222 

 

• frbconverter.exe -input input.bin -format 

bin -offset 0x10 -input variable -

start_addr 0x0 -size 0x10 -output out.frb 

This command converts the input.bin file with an offset 

of 0x10 preceded by 0x10 bytes of variable data into 

out.frb. 

 
 
 

A simple batch file can be created with the following code: 
 
 

set FRBCONVERTER=C:\Program Files (x86)\SMH 

Technologies\FlashRunner2\frbconverter.exe 

 

set INPUT_FILE=C:\Users\rertolupi\Desktop\myFile.s19 

set OUTPUT_FILE=C:\Users\rertolupi\Desktop\myFile.frb 

 

call "%FRBCONVERTER%" -input "%INPUT_FILE%" -format s19 

-output "%OUTPUT_FILE%" 

 
From this command line tool it is also possible to encrypt an 
existing FRB file or to upgrade an FRS file. 
 
Input parameters are requested in order: 

• -input input_file_name 

which defines the input file and path. It must be an FRB 
(.frb) or FRS (.frs) according to what you need to do. 

 

• -pubKeys public_keys_path 

which defines the file path for pubKeys.frk file where public 
keys to encrypt the file are stored. 
 

 



 

223 

 

• -secKey secret_key 

which defines secret key to calculate CMAC [Optional]. 
This key must be 16, 24 or 32 bytes long.  
 

• -pwdFRS password 

which defines custom password to encrypt FRB 
[Optional]. 
   

Example: 
• frbconverter -input myOldFile.frs -pubKeys 

C:\...\pubKeys.frk 

This command upgrade the myOldFile.frs file and 

create a new encrypted FRB file with the same name. The 
old file is renamed as myOldFile.frs.old. 
  



 

224 

10 Voltage Monitor 

10.1   Introduction 

Voltage Monitor is a new operative system feature implemented 
starting from version 2.32/3.02 of the OS that keeps constantly 
measured the voltage level of the two VPROG lines available for 

each channel and runs in the background regardless of driver, 
device or number of channels in use. 
 
The basic operating principle is that if an under-voltage or over-
voltage level is detected caused by exceeding both the negative 
or positive boundary threshold any ongoing flashing operation 
can be interrupted. 
 
Options to control operations are available therefore the 
monitoring can be paused or resumed by user commands that 
can be inserted in the file script, as well as the error can be 
detected to exit immediately or continue the overall flashing 
process and log. 
 
Voltage Monitor can be activated without specifying any type of 
command or parameter. The process starts checking the power 
level after the activation of the VPROG line just after ending the 

Power-up delay defined during the Project Wizard Creation and 
stops before the power is turned off. 
 
If any voltage error is identified, the monitor sends a signal to the 
operating system which will immediately disable both VPROG 

lines and terminate the execution of the running procedure. After 
disabling VPROG lines digital lines will stop also, resulting in a 



 

225 

variable timeout error return during the currently executed 
command.  

10.2   Command syntax 

Voltage monitor is enabled by setting voltage limits control check 
of the two VPROG lines (0 or 1) via Workbench software or 

scripting parameters as described below:  

 
#TCSETPAR PROG(x)LIMITS <thr> <prm2> <prm3> 

parameters explanation: 

      (x) 0 or 1: specifies the VPROG line 

  <thr>  threshold in mV of the error detection for VPROG.  

 

Threshold must be equal or greater than 1% of VPROG(x) 

Example:  VPROG0 = 3300mV  

minimum threshold value allowed: 33mV 
 

Note: parameter <prm2> and parameter <prm3> are not involved with 

Voltage Monitor. 

 

#TCSETPAR PROG0LIMITS <thr> 0 0  VPROG0 threshold limit 

#TCSETPAR PROG1LIMITS <thr> 0 0  VPROG1 threshold limit 

 

#TCSETPAR VPROG0 <mV>        VPROG0 Output Level 

#TCSETPAR VPROG1 <mV>        VPROG1 Output Level 

 

The under-voltage error is detected using the formula:  
   UVerr = Is Vsampled < (VprogSet minus Vthreshold)  
 

The over-voltage error is detected using the formula:   
   OVerr = Is Vsampled > (VprogSet plus Vthreshold)  



 

226 

The error detected is reported in the Real-Time log of the channel 
in which it occurs. 
Error types are described later in the paragraph 10.5. 
 

 

Optional commands: 

 

#VOLTAGEMONITOR DYN_SAMPLE <value> 

Parameter/values explanation: 
 

<value> ENABLED             *default 

Dynamic Sampling mode is enabled by default and the time 
of the sampling point of each channel is dynamically adjusted 
to always achieve the best available sampling rate.  
 

If the measurement is paused for any channel, the dynamic 
sampling algorithm (if not disabled by the user) compensates 
by increasing the sampling time in the other channels to reach 
the maximum frequency available. The sampling sequence 
may change due to internal task scheduling but all the 
channels are equally sampled. 
 
<value> DISABLED  

Fixed sampling time is obtained by disabling the Dynamic 
Sampling Algorithm, and can be calculated multiplying the 
minimum sampling time per channel (300uS) with the number 
of channels in which the monitor is activated and the number 
of the power supplies to control.  

 
S.T. = 300uS * 8 channels * (vprog0=1) = 2.4mS ~ 400Hz 

 

 

 

 

 



 

227 

(continued)  
 

#VOLTAGEMONITOR ON <value> 

 

<value> ERROR_CONTINUE  

The voltage monitor is enabled and keeps constantly 
monitored the subsequent operation. If an error is detected it 
is logged and the flashing process continues. 

 
<value> ERROR_EXIT            (default) 

Monitoring is restarted for the current operation and forces 
an exit of the current command execution if an error is 
detected. 

 
#VOLTAGEMONITOR OFF    

Monitoring can be paused (if not necessary for the next 
operation) 
 

#VOLTAGEMONITOR CLEAR_AVERAGE <value/no value>    

<no value> 

reset the average value already calculated for both lines 
 

<value>  VPROG0  

<value>  VPROG1 

clear data for the selected line only. 

#VOLTAGEMONITOR READ_AVERAGE <value/no value> 

<no value> 

print in the Realtime Log terminal both VPROG0 and VPROG1 

average values of the sampled data starting from the 
beginning of operations or the last CLEAR_AVERAGE 

command. 

<value>  VPROG0 

<value>  VPROG1 

print the read average value for the selected line 
 



 

228 

Usage:  
#VOLTAGEMONITOR CLEAR_AVERAGE 

[…] 

#VOLTAGEMONITOR READ_AVERAGE  

 
Commands can be added to the script to read the voltage value 
measured during the same operation. 
 

 

Script Example: 

 

[…] 

#TCSETPAR PROG0LIMITS 50 0 0 

#TCSETPAR VPROG0 3300 

[…] 

#VOLTAGEMONITOR ON ERROR CONTINUE    log only 

#VOLTAGEMONITOR CLEAR_AVERAGE     reset measure 

#TPCMD MASSERASE F          start operation 

#VOLTAGEMONITOR READ_AVERAGE      log measure 

#VOLTAGEMONITOR OFF         no monitoring 

#TPCMD BLANKCHECK F          start operation 

#VOLTAGEMONITOR ON ERROR_EXIT     error detection 

#VOLTAGEMONITOR CLEAR_AVERAGE     reset measure 

#TPCMD PROGRAM F           start operation 

#VOLTAGEMONITOR READ_AVERAGE      log measure 

#VOLTAGEMONITOR OFF         no monitoring 

#TPCMD VERIFY F R          start operation 

[…] 

 

  



 

229 

10.3  Computational load 

Voltage Monitoring has a computation load that may reflect in 5% 
- 7% increase of the overall programming time measured on a 16 
channels system. 

10.4  Measurement Process 

The measurement process starts as soon as VPROG is activated 

and stable in the output line and continues until VPROG is shut 

down. 
 
The sampling frequency is proportional to the number of 
channels currently active and its value is approximately 3.3KHZ 
when only 1 channel of VPROG0 is monitored.  

 
If both VPROG0 and VPROG1 lines are monitored simultaneously the 

sampling time increases to 600us and the sampling frequency is 
approximately 1.6KHz. 
 
For 8 channels of VPROG0 monitored only, the sampling frequency 

is about 400Hz and for 16 channels it is about 200Hz. If VPROG0 

and VPROG1 are both monitored, the sampling rate for 16 channels 

is approximately 100Hz per channel. 
  



 

230 

Sampling sequence for 8ch of VPROG0, 300uS per sample: 
 

 
Sampling sequence for 8ch of VPROG0+VROG1, 300uS per sample: 
 

 
Sampling sequence for 8ch of VPROG0, 300uS per sample, only odd  
channels are monitored: 
 

 
Threshold limits: 
 



 

231 

10.5  Error Types 

#TCSETPAR PROG0LIMITS 50 0 0 

#VOLTAGEMONITOR ON ERROR_CONTINUE 

 

Example of under-voltage detection and log: 
 
[VoltageMonitorPoll] ch:1, * VProg0 Under Voltage ERROR: 

2061mV->3300mV, [@ms: 1224] 

- 2061mV: the level measured,  

- 3300mV: the reference  

- [@ms: 1224]: elapsed time from start of operation 

→ task continue.  
 

[VoltageMonitorPoll] ch:1, * VProg0 Over Voltage ERROR: 

4180mV->3300mV, [@ms: 1551] 

- 4180mV: the level measured,  

- 3300mV: the reference  

- [@ms: 1551]: elapsed time from start of operation 

→ task continue. 
 

#VOLTAGEMONITOR ON ERROR_EXIT 

 

[VoltageMonitorPoll] ch:1, * VProg0 Under Voltage ERROR: 

2148mV->3300mV, [@ms: 56075] 

 

!*! -> Exit Signal detected [10]: VMError -6 Address 

0x000002dc. Process expiring... 

!*! -> Disabling VPROG0... 

!*! -> Disabling VPROG1... 

 

[VMErrorStatusCond] threadStatusCond[0] = TD_ERROR 

VoltageMonitor has terminated the execution of command: 

#TPCMD MASSERASE F 

 

|ERR--0400001D|Voltage Monitor Error 

detected|[file ../Src/voltageMonitor.c, line 456, funct 

VMSignalError()] 



 

232 

11 Progress Bar 

11.1   Introduction 

Progress Bar is a new operative system feature implemented 
starting from version 2.39/3.09 of the OS. The aim is to give to 
the user a tool to keep monitored the programming/verify 
progress process. 
 
The operating principle is to keep track of how much data of the 
FRB have been processed and to return a percentage value to 
the user. Therefore, this operation can’t be used to monitor 
masserase or blankcheck. 
 
This new feature is meant to be integrated using the FlashRunner 
DLL and to allow the user to create his own progress bar to 
monitor the progress of the program/verify processes. This way 
the user has a feedback of the operation status when this takes 
a long time due to the huge amount of data to program. 
 
This chapter explains how to use this feature and its limitations. 
  



 

233 

11.2   Command Syntax 

From OS 2.39/3.09 to 2.47/3.17 
 
#PROGRESSBAR <num_memories> <start_addr_1> <size_1> 
 

Parameters explanation: 

 num_memories: this is the number of memories to monitor.  

 Start_addr_1: start address of the first memory to monitor 

 Size_1: size of the first memory to monitor 
 ... 

 

Example of usage: 

A device has a Flash (from 0x0 to 0xFFFF) and an EEPROM (from 0xF1000 
to 0xF1FFF); to monitor both the memories, the command will be: 
 

#PROGRESSBAR 2 0x0 0x10000 0xF1000 0x1000 

 
Otherwise, to monitor only one of the two memories, the command will be: 
 

#PROGRESSBAR 1 0x0 0x10000 

 

Script example: 

[…] 

#PROGRESSBAR 2 0x0 0x10000 0xF1000 0x1000 

#TPSTART 

#TPCMD CONNECT 

#TPCMD MASSERASE C 

#TPCMD BLANKCHECK C 

#TPCMD PROGRAM C 

#TPCMD VERIFY C R 

#TPCMD MASSERASE D 

#TPCMD BLANKCHECK D 



 

234 

#TPCMD PROGRAM D 

#TPCMD VERIFY D R 

#TPCMD DISCONNECT 

#TPEND 

 

Starting from OS 2.48/3.18 
 
Starting from OS 2.48/3.18 the progress bar has been updated 
to provide better performances and an easier syntax to the user. 
 
#PROGRESSBAR ON <mem_type> <end_address> 
 

Parameters explanation: 

 mem_type: character of the memory to monitor: F, D, C… 

 end_address: end address to monitor. 

 

Example of usage with the device used in the previous chapter: 

[…] 

#TPSTART 

#TPCMD CONNECT 

#TPCMD MASSERASE C 

#TPCMD BLANKCHECK C 

#PROGRESSBAR ON C 0xFFFF 

#TPCMD PROGRAM C 

#TPCMD VERIFY C R 

#TPCMD MASSERASE D 

#TPCMD BLANKCHECK D 

#PROGRESSBAR ON D 0xF1FFF 

#TPCMD PROGRAM D 

#TPCMD VERIFY D R 



 

235 

#TPCMD DISCONNECT 

#TPEND 

11.3   Progress Bar and DLL 

To get the progress percentage can be used the 
GETPROGRESSBAR command. This command can be sent only 

to the Master with the following syntax: 
 

#55*GETPROGRESSBAR <channel> 

 

Where <channel> is the number of the channel to get the 

process percentage. There are two possible answers: 
 

1. Progress percentage:   #55*GETPROGRESSBAR 2 
      55|VERIFY F R: 45% 

    55|> 

 

2. When the run is ended (success/fail) or before the 
progress bar gets any data, the answer is: 

   #55*GETPROGRESSBAR 2 

    55|No operation: 0% 

    55|> 

 
Using standard send/receive functions available in the DLL it’s 
possible to loop this command and get the progress (please refer 
to chapter 8). It’s suggested to introduce an appropriate timeout 
between two requests in order to not overload the FlashRunner 
and affect too much the programming performances. 
 
  



 

236 

The new C# DLL can be used to get the progress percentage by 
using the dedicated communication channel on address 
<FR_ip>:1236 which can be opened using the FR_GetLogger 

and then to loop the Read command to get the stream. 
 

Example of usage DLL side (pseudo-code): 

ComManager myComManager = new ComManager(); 
FR_Logger progress_bar; 

myComManager.FR_GetLogger("192.168.1.152:1236", out progress_bar) 

 
while (...condition...) 

{ 

   ... Operation ... 

   progress_bar.Read(out buffer, out len); 

... Operation on the buffer ... 

} 
 

Example of the channel communication: 

 
 

If the run fails, 100% is returned from version 2.48/3.18. In the 
previous versions -1 was returned. 
 



 

237 

11.4   Limitations 

• The use of the Progress Bar, by its nature, generates an 
increase in cycle time equal to about 15% of the total. 

• The progress bar is meant to be used with devices with 
big memory. Using it with small devices will results in a lot 
of percentage jumps (i.e: from 0% to 15% and so on). 

• The use of the IGNORE_BLANK_PAGE and/or fragmented 

FRB will result in percentage jumps. 
 
From OS 2.39/3.09 to 2.47/3.17 
 

• The progress bar can’t be used if the 
IGNORE_BLANK_PAGE option is set on the TPSETSRC 

command. 

• Progress bar can be used only with automatic 
programming/verify, not with manual commands. 



 

238 

FlashRunner Internal Memory 

FlashRunner has an internal memory storage which collects all 
the data, files, information regarding your projects. Its memory is 
an SD card which comes by default with 64GB size. 
This value can be increased up to 256GB. 
If you need to increase the memory size of an already purchased 
product please contact your distributor 
If you want to purchase a new product with an already increased 
memory storage, please notify that to your distributor at ordering 
time. 
Approved SD cards for FlashRunner products are signed below: 
 

2GB Class10 

64GB microSDXC 

128 GB MicroSDXC 

256 GB MicroSDHC 

 



 

239 

12 Troubleshooting 

This section collects a set of troubleshooting techniques to 
program successfully your device with FlashRunner. 
 

 

i 
 

Note: Keep FlashRunner always in a well-ventilated 
area in order to prevent product overheating, which 
could affect product performance and, if maintained 
for a long time, it could damage product hardware 
components. 

 

12.1 Project execution failures 

If you are executing a project and FlashRunner answers to 
project execution with FAIL please open the Real Time Log tool, 
described in chapter 3.13 Click on the Log tab, click on the Clear 
button, Run again project and check related error description. 
Usually a failure on “Connect” command execution means that 
FlashRunner and target device are not correctly communicating. 
 
1. Please check that project is set for the exact device mounted 

on your board 
2. Please check cable wirings using the PinMap tool described 

in chapter 3.15. 
3. Verify you are running the correct channel 
4. Verify that all connections have been wired correctly using a 

tester:  
a. check which test point/connector pin implements 

function described on the PinMap tool and verify the 
continuity test point/connector pin and FlashRunner 



 

240 

ISP connector pin. You may find useful target board 
schematics and target board test point map. 

b. Did you confuse RX signal with TX signal? Is the 
soldering rugged? 

c. Check which device pin is connected to each test 
point/connector pin. Check continuity between the 
device pin and FlashRunner ISP connector. 

d. Does each signal they have passive components in 
between that could cause interference? If capacitance 
or resistor are needed on some lines (check it on 
device datasheet) verify that they have been designed 
on your board under specification. 

5. Is the board powered up correctly? If you are using 
FlashRunner VPROG1, please try with an external power 
supply. Does current absorption reach a realistic value? (at 
least 30mA) 

6. If you are using an external power supply, be sure that 
FlashRunner GND line is coupled with the external supplier 
GND line. 

7. If you are using FlashRunner VPROG0 line together with an 
external supply, be sure that the VPROG0 reference is the 
same as the one defined by target board design reference. 

8. If you are using FlashRunner VPROG1 line, you must be 
sure that board current absorption is less than FlashRunner 
model maximum current level supported. Please check 
FlashRunner User's Manual to get maximum current 
absorption on VPROG0 and VPROG1 

9. Has this board been already programmed? Firmwares could 
affect device startup, please try always with a device in 
erased state. 

10. Is there a watchdog active on the board? If yes please check 
how to disable it. 

11. Try slowing down communication frequency to the lowest 
value accepted (100kHz usually is available) 



 

241 

12. Try increasing PWUP, PWDOWN, RSTUP, RSTDOWN 
values 

13. GND reference must not float 
14. Please use an oscilloscope to check if signals are affected 

by “glitches”, if they are present try to compensate by putting 
a small capacitance between this signal and GND 

15. Signals must have a specific time frame for rising edge and 
falling edge. Check on datasheet which are these constraints 
and check if they are satisfied. If not, put a power-up resistor 
(resistor between GND and VPROG0) or a power-down 
resistor. 

16. Remember that cable wirings must be the shortest as 
possible. Try reducing their length, especially if they are more 
than 30 cm long and always use twisted and shielded cables. 

 
In case of assistance need please open the Real Time Log tool, 
described in chapter 3.12. Click on the Log tab, click on the Clear 
button, Run again project, check related error description. 
Contact support@smh-tech.com attaching this error log in your 
email together with SGETVER command answer (please check 
chapter 4.4.72 for more information) 

mailto:support@smh-tech.com

	1.1 Important Notice to Users
	1.2 Getting Technical Support
	2 System Setup/Upgrade
	2.1 Software Setup
	2.2 What you need to start
	2.3 Connection setup
	2.3.1 Ethernet LAN connection settings
	2.3.2 USB CONNECTION – WINDOWS®
	2.3.3 USB CONNECTION – LINUX

	2.4 OS Update

	3 FlashRunner Workbench
	3.1 Overview
	3.2 Opening window
	3.3 Top toolbar
	3.4 Left toolbar
	3.5  Project setup
	3.6 Production Control
	3.7 Project Editor
	3.8 Cyber Security
	3.9 Wizard
	3.9.1 FlashRunner selection page
	3.9.2 Main page
	3.9.3 Device selection page
	3.9.4 FRB Management page
	3.9.5 Communication settings page
	3.9.6 Powering settings page
	3.9.7 Additional parameters page
	3.9.8 Command settings page
	3.9.9 Additional commands page
	3.9.10 Add the project to a channel

	3.10 Encrypt FRB (FRS)
	3.11 Advanced file manager
	3.12 Terminal
	3.13 Log
	3.14 Memory Map tool
	3.15 Pin Map Tool
	3.16 Advanced FRB Manager
	3.16.1 Add data to FRB: import from source file
	3.16.2 Add data to FRB: Fill Data / Variable Data
	3.16.3 Edit FRB block
	3.16.4 Other Options


	4 FlashRunner Commands
	4.1 How to control FlashRunner
	4.1.1 Host Mode
	4.1.2 Standalone Mode

	4.2 Command Syntax
	4.2.1 Sending a Command
	4.2.2 Receiving the Answer
	4.2.3 Numeric Parameters

	4.3 Command Summary
	4.4 Command Reference
	4.4.1 CRC
	4.4.2 CLRERR
	4.4.3 CLRLOG
	4.4.4 DELAY
	4.4.5 DYNMEMCLEAR
	4.4.6 DYNMEMCLEARHEADER
	4.4.7 DYNMEMREAD
	4.4.8 DYNMEMSET
	4.4.9 DYNMEMSET2
	4.4.10 DYNMEMSETHEADER
	4.4.11 DYNMEMSETW
	4.4.12 DYNMEMSETW2
	4.4.13 ECHO
	4.4.14 FORCEDRIVER
	4.4.15 FRBREAD
	4.4.16 FRBREADCMAC
	4.4.17 FRBREADCRC
	4.4.18 FSCMAC
	4.4.19 FSCOUNT
	4.4.20 FSCRC
	4.4.21 FSEXIST
	4.4.22 FSGETCONTROL
	4.4.23 FSLS
	4.4.24 FSLS2
	4.4.25 FSRM
	4.4.26 FSSETCONTROL
	4.4.27 GENCRYPTOKEY
	4.4.28 GETADMINTIMEOUT
	4.4.29 GETCMDLEVEL
	4.4.30 GETCOUNTER
	4.4.31 GETDATE
	4.4.32 GETENGSTATUS
	4.4.33 GETFREEMEM
	4.4.34 GETIP
	4.4.35 GETLOGLEVEL
	4.4.36 GETPROGRESSBAR
	4.4.37 GETPUBKEY
	4.4.38 GETVPROG
	4.4.39 HELP
	4.4.40 HSMEMFORMAT
	4.4.41 ISMEMENOUGH
	4.4.42 ISPANELMODE
	4.4.43 LICERASE
	4.4.44 LICINSTALL
	4.4.45 LISTLIC
	4.4.46 LISTLICAM
	4.4.47 LOADDRIVER
	4.4.48 LOGIN
	4.4.49 LOGOUT
	4.4.50 PROGRESSBAR
	4.4.51 REBOOT
	4.4.52 RLYCLOSE
	4.4.53 RLYOPEN
	4.4.54 RSTENGSTATUS
	4.4.55 RUN
	4.4.56 SETADMINPWD
	4.4.57 SETADMINTIMEOUT
	4.4.58 SETCOUNTER
	4.4.59 SETCMDLEVEL
	4.4.60 SETDATE
	4.4.61 SETDIO
	4.4.62 SETFRSPWD
	4.4.63 SETIP
	4.4.64 SETLOGLEVEL
	4.4.65 SETMUX
	4.4.66 SETPANELMODE
	4.4.67 SETSERIALBAUDRATE
	4.4.68 SGETAMSN
	4.4.69 SGETENG
	4.4.70 SGETERR
	4.4.71 SGETSN
	4.4.72 SGETVER
	4.4.73 SGETVERALGO
	4.4.74 SGETVERALGOLIST
	4.4.75 SHA256
	4.4.76 SHUFFLEDIO
	4.4.77 SHUFFLEDIO_GETMAP
	4.4.78 SPING
	4.4.79 TCSETDEV
	4.4.80 TCSETPAR
	4.4.81 TESTVPROG
	4.4.82 TPCMD
	4.4.83 TPEND
	4.4.84 TPSETDUMP
	4.4.85 TPSETSRC
	4.4.86 TPSTART
	4.4.87 TPUNSETDUMP
	4.4.88 TPUNSETSRC
	4.4.89 UNFORCEDRIVER
	4.4.90 UNLOADDRIVER
	4.4.91 UNSETADMINTIMEOUT
	4.4.92 VOLTAGEMONITOR
	4.4.93  WATCHDOGFEED
	4.4.94 WHOAMI


	5 Projects
	5.1 Execution and Termination
	5.1.1 Standalone project execution
	5.1.2  Remote projects execution

	5.2 Project-Specific Directives
	5.3 Logging
	5.4 Comments
	5.5 Conditional scripting

	6 Serial Numbering
	6.1 Introduction
	6.2 Command syntax
	6.3 Example
	6.4 Word Addressing
	6.5 Using dynamic memory without FRB

	7 Data Protection System
	7.1 User management
	7.1.1  Command permission level
	7.1.2 Non-standard command permission level
	7.1.3  Flashing cycle limitation
	7.1.4  Admin session timeout

	7.2 FRB encryption
	7.3 Managing big FRS on FlashRunner High-Speed
	7.4 Dynamic data encryption
	7.5 OS Certification

	8 FlashRunner Interface Library
	8.1 Overview
	8.2 FlashRunner Interface Library Overview
	8.3 Installation
	8.4 Interface Library Reference (version 1.0)
	8.4.1 Using the Interface Library Functions
	8.4.2 Return Values of the Interface Library Functions
	8.4.3 Unicode Functions
	8.4.4 FR_OpenCommunication
	8.4.5 FR_CloseCommunication
	8.4.6 FR_GetAnswer
	8.4.7 FR_GetFile
	8.4.8 FR_GetLastErrorMessage
	8.4.9 FR_SendCommand
	8.4.10 FR_SendFile
	8.4.11 FR_GetPublicKey
	8.4.12 FR_EncryptData
	8.4.13 FR_HexToAsciiStream

	8.5 Interface Library Reference (version 2.0)
	8.5.1 Using the C# Interface Library Class
	8.5.2 Return Values of the Interface Library Methods
	8.5.3 Method Reference for FR 2.0
	8.5.4 FR_OpenCommunication
	8.5.5 FR_CloseCommunication
	8.5.6 FR_SendCommand
	8.5.7 FR_GetAnswer
	8.5.8 FR_GetLastErrorMessage
	8.5.9 FR_GetDllVersion
	8.5.10 FR_SendFile
	8.5.11  FR_GetFile
	8.5.12 FR_RunProject
	8.5.13 FR_GetLogger
	8.5.14 FR_DisposeLogger
	8.5.15 FR_GetPublicKey
	8.5.16 FR_EncryptData
	8.5.17 FR_HexToAsciiStream


	9 FRB Converter
	10 Voltage Monitor
	10.1   Introduction
	10.2   Command syntax
	10.3  Computational load
	10.4  Measurement Process
	10.5  Error Types

	11 Progress Bar
	11.1   Introduction
	11.2   Command Syntax
	11.3   Progress Bar and DLL
	11.4   Limitations

	FlashRunner Internal Memory
	12 Troubleshooting
	12.1 Project execution failures


